Преобразование из десятичной системы в двоичную

Содержание

Преобразование из десятичной системы в двоичную

Система счисления – это код, в котором используют специальные символы для обозначения количества каких-либо объектов.

Десятичная система имеет символы 0,1,2,3………..9 всего их 10, поэтому её иногда называют системой счисления с основанием 10.

Двоичная система счисления имеет только 2 символа 0 и 1, поэтому её называют системой счисления с основанием 2. Символы десятичной системы счисления могут быть записаны в двоичной системе следующим образом:

9

десятичный символ1
двоичное число1101110010111011110001001

Заметим, что символы 0 и 1 в обеих системах совпадают. Рассмотрим число 648 в десятичной системе – его иногда записывают так: 64810. В этом числе:

Цифра 6 обозначает 600, так как она занимают 3 разряд слева от десятичной точки,

Цифра 4 обозначает 40, так как она занимает второй разряд от десятичной точки,

Цифра 8 представляет число 8, поскольку она находится в первом разряде слева от десятичной точки, таким образом, всё число есть сумма:

648=600+40+8=6·10 2 +4·10 1 +8·10 0 , где (·) символ операции умножения. Этот пример иллюстрирует понятие «вес разряда». Аналогичное понятие «вес разряда» используется и в двоичной системе. Например, число 10112=2 3 ·1+2 2 ·0+2 1 ·1+2 0 ·1

Вес следующего разряда = весу предыдущего разряда умноженному ( ·) на основание системы счисления.

Используя это правило, запишем веса десяти первых разрядов двоичной системы:

2 72 6

2 52 42 32 22 12 0512256128643216

1. Преобразование двоичных чисел в десятичные.

Пусть двоичное число 110011 необходимо преобразовать в десятичное.

1. Подписываем под таблицей 2 преобразовываемое число:

5122561286432168421

2. Искомое десятичное число будет равно сумме произведений соответствующих разрядов двоичного числа и их «весов» из таблицы 2:

Пусть двоичное число 11111010002 необходимо преобразовать в десятичное. Решение представлено ниже:

11111010002 = 512 ·1+256·1+128·1+64·1+32·1+16·0+8·1+4·0+2·0+1·0 = 100010.

Материал для самостоятельного решения:

2. Преобразование десятичных чисел в двоичные.

Пусть 1310 нужно перевести в двоичную систему счисления. Переход в этом случае осуществляется делением числа 1310 , на основание системы счисления в которую мы переходим, в целых числах с выписыванием остатков деления, по следующей схеме:

13:2 = 6 остаток 1 это разряд весом 1

6 : 2 = 3 остаток 0 это разряд весом 2

3 : 2 = 1 остаток 1 это разряд весом 4

1 : 2 = 0 остаток 1 это разряд весом 8

Помня о том, что самый младший разряд всегда занимает крайнее правое место в записанном числе в любой системе счисления, выписываем результат:

Процесс перехода заканчивается в тот момент, когда очередной результат деления даст ноль ( 0 ) целых.

Вывод: остатки, от деления, выписанные в соответствии с весами разрядов, дадут искомое число.

Переведем еще одно число 3710 в двоичную систему счисления:

37:2 = 18 остаток 1

18:2 = 9 остаток 0

9 : 2 = 4 остаток 1

4 : 2 = 2 остаток 0

2 : 2 = 1 остаток 0

1 : 2 = 0 остаток 1

Отсюда 3410 = 100 1012. Деление заканчивается в тот момент, когда имеем частное равное 0 .

Материал для самостоятельного решения:

Преобразовать следующие десятичные числа в двоичные:

3. Шестнадцатиричные числа.

В шестнадцатиричной системе счисления , согласно определению, должно быть 16 различных символов перечислим их 0,1,2,3,4,5,6,7,8,9, A , B , C , D , E , F .

Буква A обозначает число 10

B обозначает число 11

Преимущество шестнадцатиричной системы состоит в том, что она позволяет реализовывать переход от шестнадцатиричной к двоичной системе счисления достаточно просто, используя тетрады ( tetra в переводе с греческого означает четыре) двоичных символов.

Например: символ F в шестнадцатиричной системе соответствует четырёхразрядному числу 1111 2 . Двухразрядное двоичное число А616 = 101001102. Для перехода от двоичной к шестнадцатиричной системе счисления используют следующую таблицу соответствия:

Преобразование из десятичной системы в двоичную

Правила перевода целых чисел
Результатом является целое число.
1. Из десятичной системы счисления – в двоичную и шестнадцатеричную:

  1. исходное целое число делится на основание системы счисления, в которую переводится (2 или 16); получается частное и остаток;
  2. если полученное частное не делится на основание системы счисления так, чтобы образовалась целая часть, отличная от нуля, процесс умножения прекращается, переходят к шагу в). Иначе над частным выполняют действия, описанные в шаге а);
  3. все полученные остатки и последнее частное преобразуются в соответствии с таблицей в цифры той системы счисления, в которую выполняется перевод;
  4. формируется результирующее число: его старший разряд – полученное последнее частное, каждый последующий младший разряд образуется из полученных остатков от деления, начиная с последнего и кончая первым. Таким образом, младший разряд полученного числа – первый остаток от деления, а старший – последнее частное.

Пример 3.1. Выполнить перевод числа 19 в двоичную систему счисления:

Пример 3.2. Выполнить перевод числа 19 в шестнадцатеричную систему счисления:

Пример 3.3. Выполнить перевод числа 123 в шестнадцатеричную систему счисления:

2. Из двоичной и шестнадцатеричной систем счисления – в десятичную. В этом случае рассчитывается полное значение числа по формуле.

Пример 3.4. Выполнить перевод числа 1316 в десятичную систему счисления. Имеем:
1316 = 1*16 1 + 3*16 0 = 16 + 3 = 19.
Таким образом, 1316 = 19.

Пример 3.5. Выполнить перевод числа 100112 в десятичную систему счисления. Имеем:
100112 = 1*2 4 + 0*2 3 + 0*2 2 + 1*2 1 + 1*2 0 = 16+0+0+2+1 = 19.
Таким образом, 100112 = 19.

3. Из двоичной системы счисления в шестнадцатеричную:

  1. исходное число разбивается на тетрады (т.е. 4 цифры), начиная с младших разрядов. Если количество цифр исходного двоичного числа не кратно 4, оно дополняется слева незначащими нулями до достижения кратности 4;
  2. каждая тетрада заменятся соответствующей шестнадцатеричной цифрой в соответствии с таблицей

Пример 3.6. Выполнить перевод числа 100112 в шестнадцатеричную систему счисления.
Поскольку в исходном двоичном числе количество цифр не кратно 4, дополняем его слева незначащими нулями до достижения кратности 4 числа цифр. Имеем:

4. Из шестнадцатеричной системы счисления в двоичную:

  1. каждая цифра исходного числа заменяется тетрадой двоичных цифр в соответствии с таблицей. Если в таблице двоичное число имеет менее 4 цифр, оно дополняется слева незначащими нулями до тетрады;
  2. незначащие нули в результирующем числе отбрасываются.

Пример 3.7. Выполнить перевод числа 1316 в двоичную систему счисления.
По таблице имеем: 116 = 12 и после дополнения незначащими нулями 12 = 00012; 316 = 112 и после дополнения незначащими нулями 112 = 00112. Тогда 1316 = 000100112. После удаления незначащих нулей имеем 1316 = 100112.


  1. исходная дробь умножается на основание системы счисления, в которую переводится (2 или 16);
  2. в полученном произведении целая часть преобразуется в соответствии с таблицей в цифру нужной системы счисления и отбрасывается – она является старшей цифрой получаемой дроби;
  3. оставшаяся дробная часть вновь умножается на нужное основание системы счисления с последующей обработкой полученного произведения в соответствии с шагами а) и б).
  4. процедура умножения продолжается до тех пор, пока ни будет получен нулевой результат в дробной части произведения или ни будет достигнуто требуемое количество цифр в результате;
  5. формируется результат: последовательно отброшенные в шаге б) цифры составляют дробную часть результата, причем в порядке уменьшения старшинства.

Пример 3.8. Выполнить перевод числа 0,847 в двоичную систему счисления. Перевод выполнить до четырех значащих цифр после запятой.
Имеем:

В данном примере процедура перевода прервана на четвертом шаге, поскольку получено требуемое число разрядов результата. Очевидно, это привело к потере ряда цифр.
Таким образом, 0,847 = 0,11012.

Пример 3.9. Выполнить перевод числа 0,847 в шестнадцатеричную систему счисления. Перевод выполнить до трех значащих цифр.

В данном примере также процедура перевода прервана. Таким образом, 0,847 = 0,D8D2.

2. Из двоичной и шестнадцатеричной систем счисления – в десятичную. В этом случае рассчитывается полное значение числа по формуле, причем коэффициенты ai принимают десятичное значение в соответствии с таблицей.

Пример 3.10. Выполнить перевод из двоичной системы счисления в десятичную числа 0,11012. Имеем:
0,11012 = 1*2 -1 + 1*2 -2 + 0*2 -3 +1*2 -4 = 0,5 + 0,25 + 0 + 0,0625 = 0,8125.
Расхождение полученного результата с исходным для получения двоичной дроби числом вызвано тем, что процедура перевода в двоичную дробь была прервана.
Таким образом, 0,11012 = 0,8125.

Пример 3.11. Выполнить перевод из шестнадцатеричной системы счисления в десятичную числа 0,D8D16. Имеем:
0,D8D16 = 13*16 -1 + 8*16 -2 + 13*16 -3 = 13*0,0625 + 8*0,003906 + 13* 0,000244 = 0,84692.
Расхождение полученного результата с исходным для получения двоичной дроби числом вызвано тем, что процедура перевода в шестнадцатеричную дробь была прервана.
Таким образом, 0,D8D16 = 0,84692.

3. Из двоичной системы счисления в шестнадцатеричную:

  1. исходная дробь делится на тетрады, начиная с позиции десятичной точки вправо. Если количество цифр дробной части исходного двоичного числа не кратно 4, оно дополняется справа незначащими нулями до достижения кратности 4;
  2. каждая тетрада заменяется шестнадцатеричной цифрой в соответствии с таблицей.

Пример 3.12. Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,11012. Имеем:
0,11012 = 0,11012 В соответствии с таблицей 11012 = D16. Тогда имеем 0,11012 = 0,D16.

Пример 3.13. Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,00101012.
Поскольку количество цифр дробной части не кратно 4, добавим справа незначащий ноль: 0,00101012 = 0,001010102. В соответствии с таблицей 00102 = 102 = 216 и 10102 = A16. Тогда имеем 0,00101012 = 0,2A16.

4. Из шестнадцатеричной системы счисления в двоичную:

  1. каждая цифра исходной дроби заменяется тетрадой двоичных цифр в соответствии с таблицей;
  2. незначащие нули отбрасываются.

Пример 3.14. Выполнить перевод из шестнадцатеричной системы счисления в двоичную числа 0,2А16.
По таблице имеем 216 = 00102 и А16 = 10102. Тогда 0,2А16 = 0,001010102.
Отбросим в результате незначащий ноль и получим окончательный результат: 0,2А16 = 0,00101012.

Правило перевода дробных чисел
Отдельно переводится целая часть числа, отдельно – дробная. Результаты складываются.

Пример 3.15. Выполнить перевод из десятичной системы счисления в шестнадцатеричную числа 19,847. Перевод выполнять до трех значащих цифр после запятой.
Представим исходное число как сумму целого числа и правильной дроби:
19,847 = 19 + 0,847.
Как следует из примера 3.2, 19 = 1316; а в соответствии с примером 3.9 0,847 = 0,D8D16. Тогда имеем:
19 + 0,847 = 1316 + 0,D8D16 = 13,D8D16.
Таким образом, 19,847 = 13,D8D16.

Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления

Пример №2 . Представить двоичное число 101.102 в нормализованном виде, записать в 32-битом стандарте IEEE754.
Таблица истинности

Способы представления чисел

Алгоритм перевода чисел из одной системы счисления в другую

Пример №1 .


Перевод из 2 в 8 в 16 системы счисления.
Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

Пример №2 . 1010111010,1011 = 1.010.111.010,101.1 = 1272,518
здесь 001=1; 010=2; 111=7; 010=2; 101=5; 001=1

При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.
Пример №3 . 1010111010,1011 = 10.1011.1010,1011 = 2B12,13HEX
здесь 0010=2; 1011=B; 1010=12; 1011=13

Перевод чисел из 2 , 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

Пример №4 .
Пример перевода из двоичной в десятичную систему счисления. Пример перевода из восьмеричной в десятичную систему счисления. Пример перевода из шестнадцатеричной в десятичную систему счисления.

Еще раз повторим алгоритм перевода чисел из одной системы счисления в другую ПСС

  1. Из десятичной системы счисления:
    • разделить число на основание переводимой системы счисления;
    • найти остаток от деления целой части числа;
    • записать все остатки от деления в обратном порядке;
  2. Из двоичной системы счисления
    • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
    • Для перевода числа в восьмеричную необходимо разбить число на триады.
      Например, 1000110 = 1 000 110 = 1068
    • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.
      Например, 1000110 = 100 0110 = 4616

Позиционной называется система, для которой значимость или вес цифры зависит от ее места расположения в числе. Соотношение между системами выражается таблицей.
Таблица соответствия систем счисления:

Двоичная ССШестнадцатеричная СС
0000
00011
00102
00113
01004
01015
01106
01117
10008
10019
1010A
1011B
1100C
1101D
1110E
1111F

Таблица для перевода в восьмеричную систему счисления

Двоичная ССВосьмеричная СС
000
0011
0102
0113
1004
1015
1106
1117

Пример №2 . Перевести число 100,12 из десятичной системы счисления в восьмеричную систему счисления и обратно. Пояснить причины расхождений.
Решение.
1 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления.

Целая часть от деленияОстаток от деления
100 div 8 = 12100 mod 8 = 4
12 div 8 = 112 mod 8 = 4
1 div 8 = 01 mod 8 = 1

Остаток от деления записываем в обратном порядке. Получаем число в 8-ой системе счисления: 144
100 = 1448

Для перевода дробной части числа последовательно умножаем дробную часть на основание 8. В результате каждый раз записываем целую часть произведения.
0.12*8 = 0.96 (целая часть )
0.96*8 = 7.68 (целая часть 7)
0.68*8 = 5.44 (целая часть 5)
0.44*8 = 3.52 (целая часть 3)
Получаем число в 8-ой системе счисления: 0753.
0.12 = 0.7538

2 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления.
Обратный перевод из восьмеричной системы счислений в десятичную.

Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
144 = 8 2 *1 + 8 1 *4 + 8 0 *4 = 64 + 32 + 4 = 100

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда
0753 = 8 -1 *0 + 8 -2 *7 + 8 -3 *5 + 8 -4 *3 = 0.119873046875 = 0.1199

144,07538 = 100,9610
Разница в 0,0001 (100,12 – 100,1199) объясняется погрешностью округлений при переводе в восьмеричную систему счислений. Эту погрешность можно уменьшить, если взять большее число разрядов (например, не 4, а 8).

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Система счисления – это способ представления числа. Одно и то же число может быть представлено в различных видах. Например, число 200 в привычной нам десятичной системе может иметь вид 11001000 в двоичной системе, 310 в восьмеричной и C8 в шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 – красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.

Перевод в десятичную систему счисления

Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на X n , где X – основание исходного числа, n – номер разряда. Затем суммировать полученные значения.

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2 n , где n – номер разряда.

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Триада000001010011100101110111
Цифра1234567

Перевод из двоичной системы в шестнадцатеричную

Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2 n , где n – номер разряда, и сложим результаты.

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Цифра1234567
Триада000001010011100101110111

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Перевод чисел из одной системы счисления в другую онлайн

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку “Перевести”. Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число6372
позиция321

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число1287.923
позиция321-1-2-3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

где Цn-целое число в позиции n, Д-k– дробное число в позиции (-k), s – система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр <0,1,2,3,4,5,6,7,8,9>, в восьмеричной системе счисления – из множества цифр <0,1,2,3,4,5,6,7>, в двоичной системе счисления – из множества цифр <0,1>, в шестнадцатеричной системе счисления – из множества цифр <0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F>, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
102816
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·2 6 + 0 ·2 5 + 1·2 4 + 1·2 3 + 1·2 2 + 0·2 1 + 1·2 0 + 0·2 -1 + 0·2 -2 + 1·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B – на 11, C– на 12, F – на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления – последовательным делением целой части числа на основание системы счисления (для двоичной СС – на 2, для 8-ичной СС – на 8, для 16-ичной – на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

1592
158792
178392
138192
11892
1842
1422
21

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

6158
608768
77298
481
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

1967316
19664122916
912167616
13644
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 – D. Следовательно наше шестнадцатеричное число – это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x2
0.428
x2
0.856
x2
10.712
x2
10.424
x2
0.848
x2
10.696
x2
10.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.

Следовательно можно записать:

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x2
0.25
x2
0.5
x2
10.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x16
30.424
x16
60.784
x16
120.544
x16
80.704
x16
110.264
x16
40.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x8
40.096
x8
0.768
x8
60.144
x8
10.152
x8
10.216
x8
10.728

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

Перевод чисел в различные системы счисления с решением

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ . или , . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку “Получить запись”.

Исходное число записано в -ой системе счисления.

Хочу получить запись числа в -ой системе счисления.

Выполнено переводов: 4390802

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число:5921
Позиция:321

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число:1234567
Позиция:321-1-2-3

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.11012 в десятичную систему счисления.
Решение: 10011.11012 = 1·2 4 +0·2 3 +0·2 2 +1·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 16+2+1+0.5+0.25+0.0625 = 19.812510
Ответ: 10011.11012 = 19.812510

2. Перевести число E8F.2D16 в десятичную систему счисления.
Решение: E8F.2D16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.1757812510
Ответ: E8F.2D16 = 3727.1757812510

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 27310 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 27310 = 4218

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.12510 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 – целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 – вторая цифра результата), 0.5·2 = 1.0 (1 – третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510 = 0.0012

Читайте также:  Прибор для измерения сопротивления изоляции и заземления
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector