Приборы для измерения давления и вакуума

Вакуумметр

Вакуумме́тр (от вакуум и греч. metreo — измеряю) — вакуумный манометр, прибор для измерения давления разрежённых газов.

По принципу действия вакуумметры можно подразделить на следующие типы:

  • классические — являются обычными манометрами (жидкостными либо анероидами) для измерения малых давлений. В жидкостных вакуумметрах в измерительном колене применяется масло с известной плотностью и с по возможности малым давлением пара с тем, чтобы не нарушать вакуум. Обычно жидкостные манометры изолируют от остальной вакуумной системы при помощи азотных ловушек — специальных устройств наполняемых жидким азотом и служащих для вымораживания паров рабочего вещества манометра. Область измеряемых давлений от 10 до 100000 Па.
  • ёмкостные — основаны на изменении ёмкости конденсатора при изменении расстояния между обкладками. Одна из обкладок конденсатора выполняется в виде гибкой мембраны. При изменении давления мембрана изгибается и меняет ёмкость конденсатора, которую можно измерить. После градуировки возможно использовать прибор для измерения давлений. Область измеряемых давлений от 1 до 1000 Па.
  • терморезисторные — работают в мостовой схеме, стремящейся поддерживать постоянное сопротивление (а значит температуру) терморезистора, открытого измеряемому давлению. Чем выше давление газа, тем большую мощность нужно подводить к терморезистору для поддержания неизменной температуры. Соответственно, между давлением и напряжением на датчике (током через него) имеется однозначная зависимость. Если терморезистором является платиновая нить, то такой датчик называется манометром Пирани. Примером могут служить отечественные датчики ПМТ-6-3. Терморезисторные манометры применяются для измерения давлений от 10 −3 до 760 и более Torr
  • термопарные — принцип действия основан на охлаждении за счёт теплопроводности. Термопара находится в контакте с нагреваемым проводом. Чем лучше вакуум, тем меньше теплопроводность газа, и следовательно выше температура проводника (теплопроводность разрежённого газа прямо пропорциональна его давлению). Проградуировав подключенный к термопаре милливольтметр при известных давлениях можно использовать измеряемое значение температуры для определения давления. К термопарным относятся, например, отечественные датчики ПМТ-2 и ПМТ-4М. Область измеряемых давлений от 10 −3 до 10 Torr
  • ионизационные — принцип действия основан на ионизации газа. По сути, представляют собой вакуумный диод, на анод которого подано положительное, а на дополнительный электрод, называемый коллектором, большое отрицательное напряжение. При понижении давления газа уменьшается число атомов, способных подвергнуться ионизации, и соответственно ионизационный ток (ток коллектора), текущий между электродами при данном напряжении. Область измеряемых давлений от 10 −12 до 10 −1 Torr. Подразделяются на вакуумметры с холодным катодом (Пеннинга и магнетронные) и с накаливаемым катодом. К последним относится датчик ЛМ-2 с постоянной 10 5 мкА/мм.рт.ст.
  • альфатрон — разновидность ионизационного вакуумметра. Отличается от последнего тем, что для ионизации используются не электроны, а альфа-частицы, испускаемые источником (порядка 0,1-1мКюри) на радии или плутонии. Альфатроны проще, надежнее, и точнее вакуумметров с катодом, но из-за низкой чувствительности, требующей очень сложной схемы измерения сверхмалых токов, не могут их заменить. Обычно используются в том же диапазоне давлений, что и термопарные (терморезисторные) вакуумметры.

Термопарный и ионизационный вакууметры широко применяются в промышленности и экспериментах, так как являются массовыми, хорошо повторяемыми приборами. Практически все выполняются в виде электронных ламп со стеклянным отростком, соединяющимся с исследуемым объёмом с помощью шланга или припаивания.

Напрямую следует из его типа, поскольку назначение у этих приборов одно и то же, а вот точность и предел измерений достаточно сильно отличаются. Так механическими, можно измерять разрежение до 100 Па (1 Па = 10 −5 Бар), жидкостными – до 0,1 Па, тепловыми – до 0,001 Па, а компрессионными – до 0,001 Па (для примера, ионизационные вакуумметры способны измерить разрежение до 10 −8 Па, и это не предел).

Есть всего два основных элемента: один из них преобразует в электрический сигнал любые изменения состояния чувствительного элемента, другой – оценивает этот сигнал, пересчитывает в единицы давления, и информирует пользователя прибором о степени разрежения на контролируемом участке технологической линии или отдельного механизма. С механическими (анероидами) еще проще: ввернул – и считывай показания по стрелке (поскольку оба элемента объединены в одном корпусе прибора)

Измерительный блок вакуумметра – часть вакуумметра, предназначенная для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем, и содержащая блок питания и все электрические цепи, необходимые для работы вакуумметра. В настоящее время среди ведущих мировых производителей вакуумного измерительного оборудования наблюдается тенденция объединения в одном компактном корпусе измерительного блока и преобразователя давления, вакуумметры имеющие такую конструкцию получили название компактные моноблочные вакуумметры.

Отсчетное устройство вакуумметра – часть измерительного блок вакуумметра, предназначенная для отсчитывания значения измеряемой величины. Как правило в современных вакуумметрах отсчетное устройство представляет собой жидкокристаллический дисплей.

Область применения вакуумметров достаточно широка: они используются и в промышленности, и в быту – везде, где нужно знать и регулировать давление: для контроля работы вакуумных насосов, степени разрежения в маслопроводах или технологических полостях, в лабораторных исследованиях, для обслуживания кондиционеров, в автосервисах – для измерения давления во впускном коллекторе.

  • Лиофилизация
  • Химическое производство
  • Системы молекулярной перегонки
  • Обслуживание вакуумных насосов
  • Анализаторы, спектрометрия
  • Вакуумирование и заправка систем охлаждения
  • Вакуумная упаковка
  • Вакуумная теплоизоляция, двустенные сосуды и трубопроводы
  • Изготовление полупроводниковых и электронных компонентов
  • Контроль качества

См. также

Что такое wiki.moda Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Читайте также:  Приборы для измерения напряжения прикосновения

Вакуумметр

Вакуумме́тр (от вакуум и греч. metreo — измеряю) — вакуумный манометр, прибор для измерения давления разрежённых газов.

По принципу действия вакуумметры можно подразделить на следующие типы:

  • классические — являются обычными манометрами (жидкостными либо анероидами) для измерения малых давлений. В жидкостных вакуумметрах в измерительном колене применяется масло с известной плотностью и с по возможности малым давлением пара с тем, чтобы не нарушать вакуум. Обычно жидкостные манометры изолируют от остальной вакуумной системы при помощи азотных ловушек — специальных устройств наполняемых жидким азотом и служащих для вымораживания паров рабочего вещества манометра. Область измеряемых давлений от 10 до 100000 Па.
  • ёмкостные — основаны на изменении ёмкости конденсатора при изменении расстояния между обкладками. Одна из обкладок конденсатора выполняется в виде гибкой мембраны. При изменении давления мембрана изгибается и меняет ёмкость конденсатора, которую можно измерить. После градуировки возможно использовать прибор для измерения давлений. Область измеряемых давлений от 1 до 1000 Па.
  • терморезисторные — работают в мостовой схеме, стремящейся поддерживать постоянное сопротивление (а значит температуру) терморезистора, открытого измеряемому давлению. Чем выше давление газа, тем большую мощность нужно подводить к терморезистору для поддержания неизменной температуры. Соответственно, между давлением и напряжением на датчике (током через него) имеется однозначная зависимость. Если терморезистором является платиновая нить, то такой датчик называется манометром Пирани. Примером могут служить отечественные датчики ПМТ-6-3. Терморезисторные манометры применяются для измерения давлений от 10 −3 до 760 и более Torr
  • термопарные — принцип действия основан на охлаждении за счёт теплопроводности. Термопара находится в контакте с нагреваемым проводом. Чем лучше вакуум, тем меньше теплопроводность газа, и следовательно выше температура проводника (теплопроводность разрежённого газа прямо пропорциональна его давлению). Проградуировав подключенный к термопаре милливольтметр при известных давлениях можно использовать измеряемое значение температуры для определения давления. К термопарным относятся, например, отечественные датчики ПМТ-2 и ПМТ-4М. Область измеряемых давлений от 10 −3 до 10 Torr
  • ионизационные — принцип действия основан на ионизации газа. По сути, представляют собой вакуумный диод, на анод которого подано положительное, а на дополнительный электрод, называемый коллектором, большое отрицательное напряжение. При понижении давления газа уменьшается число атомов, способных подвергнуться ионизации, и соответственно ионизационный ток (ток коллектора), текущий между электродами при данном напряжении. Область измеряемых давлений от 10 −12 до 10 −1 Torr. Подразделяются на вакуумметры с холодным катодом (Пеннинга и магнетронные) и с накаливаемым катодом. К последним относится датчик ЛМ-2 с постоянной 10 5 мкА/мм.рт.ст.
  • альфатрон — разновидность ионизационного вакуумметра. Отличается от последнего тем, что для ионизации используются не электроны, а альфа-частицы, испускаемые источником (порядка 0,1-1мКюри) на радии или плутонии. Альфатроны проще, надежнее, и точнее вакуумметров с катодом, но из-за низкой чувствительности, требующей очень сложной схемы измерения сверхмалых токов, не могут их заменить. Обычно используются в том же диапазоне давлений, что и термопарные (терморезисторные) вакуумметры.

Термопарный и ионизационный вакууметры широко применяются в промышленности и экспериментах, так как являются массовыми, хорошо повторяемыми приборами. Практически все выполняются в виде электронных ламп со стеклянным отростком, соединяющимся с исследуемым объёмом с помощью шланга или припаивания.

Напрямую следует из его типа, поскольку назначение у этих приборов одно и то же, а вот точность и предел измерений достаточно сильно отличаются. Так механическими, можно измерять разрежение до 100 Па (1 Па = 10 −5 Бар), жидкостными – до 0,1 Па, тепловыми – до 0,001 Па, а компрессионными – до 0,001 Па (для примера, ионизационные вакуумметры способны измерить разрежение до 10 −8 Па, и это не предел).

Есть всего два основных элемента: один из них преобразует в электрический сигнал любые изменения состояния чувствительного элемента, другой – оценивает этот сигнал, пересчитывает в единицы давления, и информирует пользователя прибором о степени разрежения на контролируемом участке технологической линии или отдельного механизма. С механическими (анероидами) еще проще: ввернул – и считывай показания по стрелке (поскольку оба элемента объединены в одном корпусе прибора)

Измерительный блок вакуумметра – часть вакуумметра, предназначенная для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем, и содержащая блок питания и все электрические цепи, необходимые для работы вакуумметра. В настоящее время среди ведущих мировых производителей вакуумного измерительного оборудования наблюдается тенденция объединения в одном компактном корпусе измерительного блока и преобразователя давления, вакуумметры имеющие такую конструкцию получили название компактные моноблочные вакуумметры.

Отсчетное устройство вакуумметра – часть измерительного блок вакуумметра, предназначенная для отсчитывания значения измеряемой величины. Как правило в современных вакуумметрах отсчетное устройство представляет собой жидкокристаллический дисплей.

Область применения вакуумметров достаточно широка: они используются и в промышленности, и в быту – везде, где нужно знать и регулировать давление: для контроля работы вакуумных насосов, степени разрежения в маслопроводах или технологических полостях, в лабораторных исследованиях, для обслуживания кондиционеров, в автосервисах – для измерения давления во впускном коллекторе.

  • Лиофилизация
  • Химическое производство
  • Системы молекулярной перегонки
  • Обслуживание вакуумных насосов
  • Анализаторы, спектрометрия
  • Вакуумирование и заправка систем охлаждения
  • Вакуумная упаковка
  • Вакуумная теплоизоляция, двустенные сосуды и трубопроводы
  • Изготовление полупроводниковых и электронных компонентов
  • Контроль качества

См. также

Что такое Wiki.cologne Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Приборы для измерения давления и вакума

Все приборы для измерения давления и вакуума можно разделить на три группы: пьезометры, манометры, вакуумметры.

Пьезометры – это стеклянные трубки диаметром не менее 5 мм. Нижний конец пьезометра соединяется с той областью, в которой необходимо измерить давление, а верхний должен сообщаться с атмосферой. Трубка имеет измери- тельную шкалу, по которой производят отсчет делений. При подключении пье- зометра к области измерения давления, жидкость в нем поднимается на опреде- ленную высоту h p, которая называется пьезометрической высотой (рис. 5). Из- мерив величину h p, можно определить давление в точке резервуара, к которой подключен пьезометр р a = h p ×r×g . Так как в трубке находится та же жидкость, что и в сосуде, пьезометр измеряет давление в метрах столба исследуемой жид- кости. Это является достоинством прибора. Недостаток пьезометра состоит в том, что для измерения давлений 3. 4 м вод. ст. трубки достигают значитель- ной высоты, и измерения становятся трудоемкими. Поэтому пьезометры ис- пользуют для измерения небольших давлений (до 30. 40 кПа) с высокой точно- стью.

Читайте также:  Прибор для измерения цветовой температуры света

3

Рис.5. Пьезометр Рис.6. Ртутно-чашечный манометр

Манометры бывают двух систем – жидкостные и механические. Приме- ром жидкостных манометров является ртутно-чашечный (рис. 6). Он состоит из металлической чашечки, наполненной ртутью и соединенной с открытой стек- лянной трубкой на шкале измерений. За нуль обычно принимается уровень ртути в чашке. Абсолютное давление в точке А равно р абс = р А + + r рт ×g ×h рт –

r×g ×a , где r×g ×a – постоянная величина поправки для данного прибора. Таким образом, для нахождения р абс необходимо измерить только величину h рт.

Для измерения очень малых давлений применяются микроманометры (наклонные пьезометры) (рис. 7). В них вместо малой высоты h можно отсчи- тывать значительно большую величину l = h /sina, уменьшая тем самым по- грешность измерений. Микроманометры обычно заполняются спиртом или во- дой. Угол a можно регулировать.

h

P

Рис.7. Микроманометр Рис.8. Пружинный трубчатый манометр

Механические манометры подразделяются на пружинные и мембранные. Они служат для измерения больших избыточных давлений (более 3. 4 ат). На рис. 8 показана схема пружинного трубчатого манометра. Основной элемент – полая латунная трубка, согнутая по кругу. Сечение трубки имеет форму овала или эллипса. Верхний конец трубки запаян и соединен со стрелкой, а нижний присоединяется к той области, в которой изменяется давление. Под действием давления трубка распрямляется, её свободный конец перемещается и тянет за собой стрелку. Такие манометры позволяют измерять давления до 10 000 ат.

В мембранных манометрах давление, оказываемое исследуемой средой на мембрану волнообразной формы, передается на стрелку; в результате стрел- ка поворачивается, позволяя произвести отсчет давления по шкале измерений. Мембранные манометры имеют пределы измерений 0,2. 30 ат.

Вакуумметрами называются приборы, служащие для измерения величи- ны вакуума. Принцип действия механических и жидкостных вакуумметров и описанных выше манометров одинаков; конструкции их полностью повторяют

конструкцию манометров. Кроме указанных, существуют приборы, называемые мановакуумметрами, позволяющие измерять как избыточное давление, так и вакуум.

Сила давления жидкости на плоские боковые поверхности сосуда

Необходимо найти силу давления, действующую на интересующий нас фрагмент поверхности S (рис. 9), и

точку приложения её равнодей- ствующей. Поскольку глубина по- гружения различных точек пло- щадки S относительно свободной поверхности (её уровень обозна- чен х – х) различна, то найдем сна- чала элементарную силу давления df, действующую на бесконечно малую поверхность ds, находя- щуюся на некоторой произвольной

глубине h. Для этого воспользуем- ся следующим выражением:

Рис.9. К определению силы давления на боковую стенку и центра давления:

ЦТ — центр тяжести (массы),

ЦД — центр давления

Проинтегрируем это уравнение по всей поверхности S

Второе слагаемое в правой части содержит статический момент площади

ò hds ; который равен произведению произвольной глубины погружения h ц

площадки S на ее величину:

При этом координата h ц представляет собой глубину погружения цен- тра масс площади S . Тогда сила полного давления на боковую стенку равна:

Первое слагаемое в правой части есть сила внешнего давления, второе —

Для боковой поверхности сила давления (гидростатического, полного) изменяется с глубиной. Поэтому возникает проблема отыскания точки прило- жения ее равнодействующей; эту точку называют центром давления. Найдем координату центра гидростатического давления h д, для чего применим теоре- му механики, гласящую, что относительно любой оси момент равнодействую- щей силы равен сумме моментов составляющих. Моменты будем брать перво- начально относительно оси х х, совпадающей с положением свободной по- верхности в плоскости боковой стенки:

Раскроем смысл полной силы гидростатического давления F Г/С и элемен-

тарной dF Г/С:

= r ghds , подставим эти значения в (15) и со-

2

кратив на rgполучим:

2

h Ц h Д S

где I XX момент инерции площадки S произвольной формы относительно оси х – х.

Если подставить в (16) значение h Ц через статический момент площадки S , то получится, что h д есть отношение моментов этой площадки 2-го (инерции) и 1 -го (статического) порядков относительно оси х х. Обычно удобнее опе- рировать моментом инерции I o относительно горизонтальной оси О—О, прохо- дящей через центр масс площадки S (т.к. его легче рассчитать). Формула опре- деления моментов для параллельного переноса осей известна из теоретической механики: I ХХ = I О +h Ц 2S. Подставим это значение I XX в (16):

2

h Ц h Д S

= I О + h Ц S , откуда h Д

+ O

2

Sh2

Из уравнения (17) следует, что точка приложения равнодействующей для вертикальной либо наклонной поверхностей находится ниже центра тяжести площади — это следствие нарастания давления по мере увеличения глубины.

Сила давления жидкости на криволинейные поверхности

Принцип решения данной задачи состоит в определении составляющих силы гидростатического давления по нескольким направлениям с последую- щим геометрическим сложением этих частных сил. Выделим на некоторой криволинейной поверхности АВ (рис. 10) элементарную площадку величиной ds . Ее центр тяжести погружён в жидкость на глубину h. Если атмосферное давление равно p 0 , то полное гидростатическое давление в центре тяжести площадки составит р полн = р 0 +g ×h. Тогда элементарная сила абсолютного дав- ления равна: df = ( р 0 +g ×h)×ds. Эта сила направлена по нормали к площадке ds, проведенной через ее центр тяжести. Разложим силу df на вертикальную df В и горизонтальную df Г составляющие (см. рис. 10):

Читайте также:  Прибор для измерения частоты вращения вала двигателя

df B = df × cos a = ( p 0 + r gh ) × cos a× ds

df Г = df × sin a = ( p 0 + r gh ) × sin a× ds . (18)

Величины cosds и sinds равны площадям проекций ds на горизонтальную

ХО Y и вертикальную ХО Z плоскости, т.е. cosds = ds X , Y; sinds = ds Z , Y.

Рис.10. К определению силы давления на криволинейную поверхность

Тогда система уравнений (18) примет вид:

df B = ( p 0 + r gh ) × ds X , Y

df Г = ( p 0 + r gh ) × ds Z , Y . (19)

Проинтегрируем полученные зависимости по площади:

Введение

Понятие вакуума и единицы измерения

Термин “вакуум“, как физическое явление – среда, в которой давление газа ниже атмосферного давления.

Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.

Уровни вакуума

В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:

  • Низкий вакуум (НВ): от 10 5 до 10 2 Па,
  • Средний вакуум (СВ): от 10 2 до 10 -1 Па,
  • Высокий вакуум (ВВ): от 10 -1 до 10 -5 Па,
  • Сверхвысокий вакуум (СВВ): от 10 -5 до 10 -9 Па,
  • Черезвычайно высокий вакуум (ЧВВ): -9 Па.

Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.

– Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.

Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.

– Промышленный вакуум: термин “промышленный вакуум” соотвествует уровню вакуума от -20 до -99 кПа. Данный диапазон используется в большинстве применений. Индустриальный вакуум получают с помощью ротационных, жидкостно-кольцевых,поршневых насосов и лопастных вакуумных генераторов по принципу Вентури. Область применения промышленного вакуума включает в себя захват присосками, термоформование, вакуумный зажим, вакуумная упаковка и др.

– Технический вакуум: соответствует уровню вакуума от -99 кПа. Такой уровень вакуума получают при помощи двухуровневых ротационных насосов, эксцентриковых роторных насосов, вакуумных насосов Рутса, турбомолекулярных насосов, диффузионных насосов, криогенных насосов и т.д

Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.

Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.

Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.

Примеры применения вакуума в промышленности

Вакуумные системы множественного захвата “ОКТОПУС”

Захват металлических листов, стекла, мрамора, дерева и т.д. при помощи вакуумных присосок

Перемещение гранул порошка, жидкостей и т.п.

Фиксированная дозировка объема

Захват яиц вакуумными присосками

Перемещение и маркировка с помощью присосок

Открытие пакетов с помощью присосок. Упаковочный датчик

Вакуумные цилиндры для отслаивания

Вакуумное формование полимеров

Вакуумные присоски – общая информация

Вакуумные присоски незаменимый инструмент для захвата, подъёма и перемещения предметов, листов и различных объектов, которые трудно перемещать обычными системами, из-за их хрупкости или риска деформации.

При правильном применении присоски обеспечивают удобство, экономичность и безопасность работы, что является фундаментальным принципом для идеальной реализации проектов автоматизации на производстве.

Продолжительные исследования и внимание к требованиям наших клиентов, позволили нам производить присоски выдерживающие высокие и низкие температуры, абразивный износ, электростатические разряды, агрессивные среды, а так же не оставляют пятен на поверхности переносимых предметов. Помимо этого, присоски соответствуют стандартам безопасности EEC и пищевым стандартам FDA, BGA, TSCA.

Все присоски изготавливаются из высококачественных компонентов методом вакуумного формования и подвергаются антикоррозионной обработке для долгого срока службы. Независимо от конфигурации, все присоски имеют свою маркировку.

Система множественного захвата Октопус

Региональные офисы ООО «КИП-Сервис» доступны по общему номеру 8 800 775-46-82

Уважаемые клиенты!

Обращаем Ваше внимание, что дни с 30 марта по 30 апреля 2020 г являются нерабочими.

Мы делаем все возможное для выполнения бизнес-процессов, связанных с оформлением заказов и поставок оборудования.

Для Вашего удобства в нерабочие дни продолжает полноценное функционирование интернет-офис totalkip.ru, где доступны возможности формирования заявок и выставления счетов на оплату.

При обращении к нам по телефону или email Вы так же, как и ранее получите необходимую консультацию и помощь в оформлении заказа от менеджеров по работе с клиентами.

При этом все офисы структурных подразделений будут недоступны к посещению, отгрузки товара самовывозом приостанавливаются до завершения нерабочего периода (предварительно 01.05.2020).

Отправка заказов курьерской службой Даймэкс и ТК Деловые Линии осуществляются по графику. Подробности уточняйте по телефону или по email order@kipservis.ru.

Благодарим за понимание и надеемся на скорейшее возобновление работы в штатном режиме!

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector