""

Драйвер светодиода своими руками на микросхеме lm3406

Содержание

Как сделать драйвер для светодиода

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать драйвер для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

R=1,2/I

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

Драйвер светодиода своими руками на микросхеме LM3406

Микросхема LM3406 представляет собой импульсный понижающий драйвер мощного светодиода.

  • Выходной ток до 1.5 Ампер
  • Встроенный полевой транзистор, который способствует увеличению КПД и уменьшению количества внешних компонентов
  • Поддерживает цифровую (ШИМ) и аналоговую регулировку яркости
  • Защита от перегрева
  • Может работать без конденсатора на выходе
  • Широкий диапазон питающих напряжений – от 6 до 40В

Схему драйвера светодиода я взял типовую из даташита, только добавил некоторые мелочи:

  • Разъем питания
  • Нулевые резисторы по входу и выходу
  • Светодиодный индикатор питания
  • Защиту ножки обратной связи
  • Диод для защиты от обрыва в цепи светодиодов

Замечу, что в даташите есть несколько схем, я выбрал схему с защитой от обрыва в нагрузке. Схема получилась вот такая:

В качестве индуктивности использовано желто-красное кольцо из распыленного железа, снятое со старой материнской платы.

Родную обмотку снимаем, наматываем новую обмотку, порядка 20 витков медным проводом диаметром 0.5 мм. Я намотал проводом от витой пары.

Либо ставим готовую индуктивность 22 мкГн, способную протащить через себя ток не менее 1А. Плата выполнена из двустороннего стеклотекстолита толщиной 1.5 мм. На обратной стороне платы оставлен слой меди для более быстрого распределения тепла по плате.

Обратная сторона платы драйвера:

На брюшке микросхемы расположен теплоотводящий контакт, который обязательно должен быть припаян к медному полигону на плате, для должного охлаждения микросхемы. При перегреве микросхемы сработает температурная защита. В совокупности с защитой от обрыва нагрузки, при правильном питании микросхемы, “убить” её практически нереально.

Выходной ток драйвера задаётся резистором, подключенным между выводом “CS” и землёй. Ток рассчитывается по формуле:

Ток_драйвера_Ампер = 0,2 / Сопротивление_резистора_Ом

Я составил резистор из трёх параллельно соединённых резисторов по 1 Ом. Общее сопротивление получившегося резистора – примерно 0,333 Ом.

0,2 / 0,333 Ом = 0,6 А

Выходной ток драйвера равен 0,6 Ампер.

В качестве нагрузки подключим к драйверу 2 светодиода CREE XP-G, соединённых последовательно:

На вход драйвера подадим 12 Вольт

Ну и напоследок, табличка с результатами КПД:

Напряжение падения на светодиодах,

Ток через светодиоды,

Мощность на светодиодах,

11,880,344,03926,080,63,64890,319,900,2054,07956,080,63,64889,4

Когда я собирал данный светодиодный драйвер 2 года назад, КПД был выше. Скорее всего, причина в использованной индуктивности. Но так как меня устраивает КПД 90%, то переделывать индуктивность не буду.

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
DA1LED драйвер1Поиск в AliexpressВ блокнот
VD1Диод Шоттки1SMDПоиск в AliexpressВ блокнот
VD2Диод Шоттки1SMDПоиск в AliexpressВ блокнот
C1, C5, C8Конденсатор0.1 мкФ 35В3SMD 1206Поиск в AliexpressВ блокнот
C2, C4Конденсатор электролитический470 мкФ 35В2Поиск в AliexpressВ блокнот
C3, C7Конденсатор0.1 мкФ 35В2SMD0805Поиск в AliexpressВ блокнот
C6Конденсатор1 мкФ 35В1SMD0805Поиск в AliexpressВ блокнот
R1, R4Резисторперемычка (0)2SMD1206Поиск в AliexpressВ блокнот
R2Резистор1SMD0805Поиск в AliexpressВ блокнот
R3Резистор1SMD0805Поиск в AliexpressВ блокнот
R5, R8, R9Резистор3SMD1206Поиск в AliexpressВ блокнот
R6Резистор1SMD0805Поиск в AliexpressВ блокнот
R7Резистор1SMD1206Поиск в AliexpressВ блокнот
R10Резистор1SMD0805Поиск в AliexpressВ блокнот
L1Катушка индуктивности10 мкГн1любая, на ток не менее 1,5 АПоиск в AliexpressВ блокнот
HL1Светодиодлюбой1SMD0603Поиск в AliexpressВ блокнот
Добавить все

Прикрепленные файлы:

  • Плата LM3406 Zlodey [SL6].lay6 (44 Кб)
  • Сердечники из распылённого железа в импульсных источниках питания.pdf (2209 Кб)

Оценить статью

  • Техническая грамотность

Средний балл статьи: 5 Проголосовало: 2 чел.

Комментарии (13) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

В общем собрал схему. Поэкспериментировал и несколько раз перечитал даташит. Комментарии к тому что сделал автор статьи.
1. На авторской схеме явно излишние С1, С5, С8. Как сама микросхема толерантна к высокочастотным помехам, так и LED диоды.
2. Ставить 0 Ом резисторы в качестве предохранителя – КРАЙНЕ спорное решение.
3. На схеме автора номинал С3 = 0,1мкФ. В даташите латинским по белому указано что он болжен быть 22нФ. Но это не криминально. Я пробовал и так и эдак. Результат одинаковый.
4. Номинал С4 сильно завышен. Если драйвер будет использоваться БЕЗ диммирования, то это не криминально. Если с ШИМ диммированием, то при включении на минимальной яркости диод загорается только через ПОЛ МИНУТЫ!! То есть лампа не загорается пока не зарядятся эти 470мкФ. Сам производитель на своей эвалюэйшен боард там поставил танталовый 2,2мкФ
5. Если будуте использовать ШИМ диммирование, то номинал резистора R6 должен быть от 4,7кОм до 10кОм, но уж никак не 100 Ом. Это ВАЖНО, так как ток там не должен быть превышать 70мкА.

Но это все критика. А вот “респекты и уважухи”:
1. Из всего многообразия вариантов схемы в даташите, данный вариант самый безопасный и тяжелоубиваемый. Согласен с выбором автора.
2. Очень правильный вариант разводки платы. Тепло нужно отводить. С другой стороны, у меня 13,2В и 0,24А на выходе не нагрели чип даже на пару градусов. На ощуп!

Замечания о самом чипе.
Цена. Стоимость чипа 160 рублей (2,5$). Что самое интересное у Чипа и Дипа цена = цене у быстрого Али. Ценник конский. С учетом всей обвязки, конечный ценник запросто перевалит за 500р (7,7$)
На этом фоне PT4115 выглядит ЗНАЧИТЕЛЬНО интересней. Сам чип у бастрого Али стоит 10рублей. А из обвязки нужны только доиод, резистор и индуктивность.

Так же у данного чипа несколько ограничено применение. Фонарики. Авто. Настольные лампы.
Для светильника на потолок гораздо интересней HV9910, так как на потолке не важна гальваническая развязка с 220В, а данный чип на вход принимает до 400В.

Спасибо за здравую критику.
0,1 мкФ здесь всёже нужны (у нас здесь частота не 50 Гц).
С остальными пунктами согласен.

Добавлю, что PT4115 при токе 1А имеет КПД примерно 80% или меньше.
LM3406 при токе 1А кпд выше 90%.
Также есть вариант использовать LM3406HV при питающем напряжении до 75 вольт. Если требуется зажечь большую гирлянду из светодиодов. PT4115 так не умеет.

Самодельный драйвер для мощных светодиодов

Светодиоды для своего питания требуют применения устройств, которые будут стабилизировать ток, проходящий через них. В случае индикаторных и других маломощных светодиодов можно обойтись резисторами. Их несложный расчет можно еще упростить, воспользовавшись “Калькулятором светодиодов”.

Для использования мощных светодиодов не обойтись без использования токостабилизирующих устройств – драйверов. Правильные драйвера имеют очень высокий КПД – до 90-95%. Кроме того, они обеспечивают стабильный ток и при изменении напряжения источника питания. А это может быть актуально, если светодиод питается, например, от аккумуляторов. Самые простые ограничители тока – резисторы – обеспечить это не могут по своей природе.

Немного ознакомиться с теорией линейных и импульсных стабилизаторов тока можно в статье “Драйвера для светодиодов”.

Готовый драйвер, конечно, можно купить. Но гораздо интереснее сделать его своими руками. Для этого потребуются базовые навыки чтения электрических схем и владения паяльником. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов.

Простой драйвер. Собран на макетке, питает могучий Cree MT-G2

Очень простая схема линейного драйвера для светодиода. Q1 – N-канальный полевой транзистор достаточной мощности. Подойдет, например, IRFZ48 или IRF530. Q2 – биполярный npn-транзистор. Я использовал 2N3004, можно взять любой похожий. Резистор R2 – резистор мощностью 0.5-2Вт, который будет определять силу тока драйвера. Сопротивление R2 2.2Ом обеспечивает ток в 200-300мА. Входное напряжение не должно быть очень большим – желательно не превышать 12-15В. Драйвер линейный, поэтому КПД драйвера будет определяться отношением VLED / VIN, где VLED – падение напряжения на светодиоде, а VIN – входное напряжение. Чем больше будет разница между входным напряжением и падением на светодиоде и чем больше будет ток драйвера, тем сильнее будет греться транзистор Q1 и резистор R2. Тем не менее, VIN должно быть больше VLED на, как минимум, 1-2В.

Для тестов я собрал схему на макетной плате и запитал мощный светодиод CREE MT-G2. Напряжение источника питания – 9В, падение напряжения на светодиоде – 6В. Драйвер заработал сразу. И даже с таким небольшим током (240мА) мосфет рассеивает 0,24 * 3 = 0,72 Вт тепла, что совсем не мало.

Схема очень проста и даже в готовом устройстве может быть собрана навесным монтажом.

Схема следующего самодельного драйвера также предельно проста. Она предполагает использование микросхемы понижающего преобразователя напряжения LM317. Данная микросхема может быть использована как стабилизатор тока.

Еще более простой драйвер на микросхеме LM317

Входное напряжение может быть до 37В, оно должно быть как минимум на 3В выше падения напряжения на светодиоде. Сопротивление резистора R1 рассчитывается по формуле R1 = 1.2 / I, где I – требуемая сила тока. Ток не должен превышать 1.5А. Но при таком токе резистор R1 должен быть способен рассеять 1.5 * 1.5 * 0.8 = 1.8 Вт тепла. Микросхема LM317 также будет сильно греться и без радиатора не обойтись. Драйвер также линейный, поэтому для того, чтобы КПД был максимальным, разница VIN и VLED должна быть как можно меньше. Поскольку схема очень простая, она также может быть собрана навесным монтажом.

На той же макетной плате была собрана схема с двумя одноваттными резисторами сопротивленим 2.2 Ом. Сила тока получилась меньше расчетной, поскольку контакты в макетке не идеальны и добавляют сопротивления.

Следующий драйвер является импульсным понижающим. Собран он на микросхеме QX5241.

Драйвер для мощных светодиодов на микросхеме QX5241

Схема также проста, но состоит из чуть большего количества деталей и здесь уже без изготовления печатной платы не обойтись. Кроме того сама микросхема QX5241 выполнена в достаточно мелком корпусе SOT23-6 и требует внимания при пайке.

Входное напряжение не должно превышать 36В, максимальный ток стабилизации – 3А. Входной конденсатор С1 может быть любым – электролитическим, керамическим или танталовым. Его емкость – до 100мкФ, максимальное рабочее напряжение – не менее чем в 2 раза больше, чем входное. Конденсатор С2 керамический. Конденсатор С3 – керамический, емкость 10мкФ, напряжение – не менее чем в 2 раза больше, чем входное. Резистор R1 должен иметь мощность не менее чем 1Вт. Его сопротивление рассчитывается по формуле R1 = 0.2 / I, где I – требуемый ток драйвера. Резистор R2 – любой сопротивлением 20-100кОм. Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. И рассчитан должен быть на ток не менее требуемого тока драйвера. Один из важнейших элементов схемы – полевой транзистор Q1. Это должен быть N-канальный полевик с минимально возможным сопротивлением в открытом состоянии, безусловно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Хороший вариант – полевые транзисторы SI4178, IRF7201 и др. Дроссель L1 должен иметь индуктивность 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.

Количество деталей этого драйвера совсем небольшое, все они имеют компактный размер. В итоге может получиться достаточно миниатюрный и, вместе с тем, мощный драйвер. Это импульсный драйвер, его КПД существенно выше, чем у линейных драйверов. Тем не менее, рекомендуется подбирать входное напряжение всего на 2-3В больше, чем падение напряжения на светодиодах. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть использован для диммирования – регулирования силы тока драйвера и, соответственно, яркости свечения светодиода. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.

Готовые изделия для питания мощных светодиодов можно посмотреть здесь.

Существует огромное количество принципиальных схем стабилизаторов тока, которые могут быть использованы как драйвера для мощных светодиодов. Производится также бесчисленное количество специализированных микросхем, на базе которых можно собирать драйвера самой разной сложности – все ограничивается только Вашим желанием и потребностями. Мы рассмотрели только самые простые самодельные драйвера. Читайте также статью, в которой рассматривается схема драйвера для светодиода от сети в 220В.

Схемы драйвера для светодиода: принцип работы и как сделать своими руками

Благодаря большому ассортименту источников света на основе светодиодов началось производство драйверов. Они требуются при подключении к сети 220 В и к источникам на 9-36 В. В помещениях используются лампы с цоколями и ленты, для них предпочтительнее импульсные блоки. Для лампочек в переносных фонариках, велосипедных и автомобильных фарах лучше линейные блоки. Схема драйвера для светодиодов полностью зависит от его вида. Своими руками проще сделать линейный блок, не требующий пайки микросхемы.

Зачем нужны драйверы для светодиодов и что это такое

Светодиод является полупроводником, преобразующим электроэнергию в свет, причем яркость излучения зависит от тока. Чтобы диод излучал заявленный поток света, нужно обеспечить соответствующее значение электротока. По принципу действия драйвер является блоком питания, ограничивающим и преобразующим ток из сети в соответствии с требуемыми для конкретного светодиода параметрами.

Основной показатель выходного тока – стабильность, обеспеченная микросхемой на основе транзисторов или ШИМ-преобразованием. Не менее важна способность поддерживать стабильность выходного потока во время работы. Качественный драйвер способен так же обеспечить диммирование и защитить источники света от избытка тепла и короткого замыкания.

Важно! Светодиоды с небольшой мощностью можно присоединить через резистор. Это самый простой и дешевый вариант благодаря небольшому количеству компонентов. Недостатком считается разброс значений элктротока, влекущий за собой колебания светового луча независимо от точности расчетов.

Принцип работы схемы драйвера светодиодной лампы 220 в

Все блоки питания для светодиодов условно делятся на линейные и импульсные. В первых на входе электроток проходит сопротивление, стабилизатор и выпрямитель (диодный мост), на выходе стоит генератор, обеспечивающий стабильность тока. Блоки этого типа простые и дешевые, но из-за низкого КПД (менее 80%) используются только с маломощными светодиодными лампами и лентами.

Импульсные драйверы выдают высокочастотные импульсы. Работа основана на ШИМ (широтно-импульсной модуляции). Это значит, что ток определяется соотношением ширины импульсов к временному периоду, согласно которому они следуют друг за другом. Такие блоки более компактные, КПД достигает 95%, но создается большой объем электромагнитных помех.

Схема драйвера светодиодной лампы 220 в

Светодиодная лампа общего назначения состоит из корпуса, системы охлаждения и электронной части.

К корпусу относится:

  • цоколь;
  • пластиковая колба;
  • рассеиватель света.

Справка! В дорогих моделях сравнительно много места занимает алюминиевый и пластиковый радиатор, которому при помощи термопасты прикреплена плата с диодами. В дешевых моделях этот элемент располагается внутри или его совсем нет.

Электрическая часть, расположенная в цоколе, тоже различная, количество компонентов зависит от цены:

  • при стоимости лампы 2-3$ микросхема без трансформатора (только выпрямители и конденсаторы), напряжение снижается, выпрямляется и сглаживается, ток ограничивает SMD-резистор, установленный на плате с диодами;
  • у фирменных лампочек у драйвера может быть одна из двух микросхем:
  • с импульсным трансформатором и стабилизатором;
  • с ЧИМ (частотно-импульсным модулятором) или ШИМ.

Это более сложные и дорогие конструкции, обеспечивающие функцию диммирования.

Важно! Если вольтаж светодиода больше напряжения драйвера, он должен быть импульсивный повышающий.

Как изготовить драйвер для светодиодов своими руками

Чтобы своими руками сделать драйвер для светодиодов, используются радиоэлементы, которые можно купить в обычных радиомагазинах и интернет-магазинах. Если отнестись к работе внимательно и выполнить ее аккуратно, можно создать устройства с достаточно длительным сроком эксплуатации.

Для работы требуется:

  • маломощный паяльник (25-40 Вт);
  • флюс (желательно нейтральный);
  • оловянно-свинцовый припой;
  • кусачки и пласкогубцы;
  • многожильные медные провода в изоляции с сечением 0,35-1 м 2 ;
  • изолента (термоусадочная трубка);
  • мультиметр;
  • печатная плата.

Перечень компонентов зависит от того, какой блок питания необходимо сделать.

Пример расчета

Самая простая схема для подключения светодиодов к источникам с низким напряжением. Прежде всего, рассчитывается мощность блока, базируясь на параметры источников света. Вольтаж должен быть на 20-30% выше показателя подключаемой лампочки или ленты. На выходе напряжение зависит от падения вольтажа на светодиоде.

Если нужно подключить 6 светодиодов, падение напряжения в которых 2 В (на каждом), требуется блок на 12 В и 300 мА при последовательном размещении. Чтобы подключить те же элементов в 2 параллельные линии, необходимы другие показатели – напряжение 6 В, ток 600 мА. Для таких диодов подойдет простой драйвер, состоящий из диодного моста, 2-х конденсаторов и резистора.

Диодный мост состоит из 4-х разнонаправленные диодов, задача которых – превратить синусоидальный переменный электроток в пульсирующий. К плюсу моста (со стороны входа) присоединяется пленочный конденсатор, к минусу – сопротивление, параллельно –электролитический конденсатор (для сглаживания перепадов напряжения). Значение электротока зависит от метода подключения (если диодов несколько, их можно соединить последовательно или параллельно).

Для мощного светодиода (например, 3Вт) подойдет стабилизатор-драйвер, созданный на основе микросхемы LM317 и резистора. У стабилизатора LM317 постоянный вольтаж 1,25. Если лампа новая, ей требуется ток 700 мА (максимальное значение). Чтобы рассчитать сопротивление резистора, нужно напряжение разделить на ток:

Такого резистора нет, поэтому нужно купить элемент на 1,8 Ом.

Так как микросхема LM317 предназначена для тока до 1,5 А, потребуется радиатор.

Внимание! При расчетах обязательно учитываются условия эксплуатации. Драйвер для уличного фонаря не такой, как для лампочки или ленты, используемых для подсветки в отапливаемом помещении.

Драйвер для трех led по 1 Втможно сделать из зарядного устройства мобильного телефона, если немного усовершенствовать микросхему. Нужно снять корпус и выпаять имеющийся резистор и припаять другой (на 5 кОм). Светодиоды соединить последовательно и подключить к выходному каналу. Входные каналы заменить шнуром для присоединения к сети.

Для светодиодного источника с мощностью 10 Вт можно собрать блок питания на электронной плате люминесцентной лампы на 20 Вт. Купить нужно дроссели, диоды, конденсаторы и транзисторы.

Важные нюансы сборки

Падение напряжения на светодиодах 3-30 В. Это очень мало, если сравнивать с вольтажом сети. Готовые микросхемы отличаются только показателями входного напряжения. При выборе необходимо учесть, что падения напряжения на источниках света должно составлять 10-20% от вольтажа драйвера. Поэтому не стоит делать на основе микросхемы блок для подключения к сети, если имеется 1 или 2 диода на 3-6 В.

Все элементы на плате размещаются так, чтобы между ними было минимальное расстояние и количество перемычек. Полярность и распиновку лучше проверить в технической документации. Если элементы не новые, обязательна проверка мультиметром. Паяльник лучше выбрать небольшой, способный нагреваться до 260 о С.

Конденсаторы, резисторы, диоды, микросхемы паять достаточно сложно, если их нельзя предварительно закрепить на плате. Чтобы повысить качество пайки, желательно залудить места, куда будут ставиться компоненты. Для этого капается немного флюса, на паяльник берется припой и наносится на то же место.

Каждый элемент нужно брать пинцетом за ножку, которую нужно припаять, и приставить к месту пайки. Потом на ножку наносится капля флюса, берется паяльник и подносится к припаиваемой ножке. Прикоснуться достаточно примерно на секунду, так как припой и флюс уже есть. Ножка сразу погружается в припой, нанесенный в процессе лужения.

Если элементы можно закрепить на плате, припой должен быть с флюсом. В одну руку нужно взять паяльник, в другую – проволоку. Место пайки греется 3-4 секунды, потом к нему подносится припой. При соприкосновении элемента, паяльника и проволоки последняя плавится, флюс вытекает, через секунду паяльник можно убрать.

Внимание! Хорошая пайка блестящая, припой закрывает ножку элемента со всех сторон, нет ни бугорка, ни рытвин. Если используется жидкий флюс, требуется жидкость, которой промывают платы.

Одновременно с паяльником желательно купить специальный отсос и очки. Если случится, что элемент припаялся не туда или на месте пайки образовался огромный бугор, нужно разогреть припой, взять отсос и нажать на кнопку. Все лишнее с платы моментально исчезнет. При работе с проводами и ножками элементов они могут отпружинить. Чтобы горячий припой не попал в глаза, работать желательно в очках.

Основные выводы

Светодиоды более требовательны к качеству электроэнергии, чем другие лампы. При превышении значения постоянного тока на 10-20 % в лучшем случае у них сокращается срок службы, в худшем они сгорают. Поэтому делать или выбирать driver нужно на основе точных расчетов.

Пайка резисторов, конденсаторов и готовых микросхем требует определенной сноровки. Проще сделать блок из простых элементов, не требующих создания микросхем с использованием паяльника. Микросхемы лучше покупать в виде готовой сборки, хотя конечная стоимость будет выше, но и качество тоже. Попробовать паять сложные микросхемы можно после того, как будет приобретен опыт в выполнении этой работы.

Микросхема и другие компоненты драйвера мощного светодиода.

  • Цена: $2.00 (цена за 10штук)
  • Перейти в магазин

Я публиковал несколько обзоров светодиодов, пришло время написать чем их можно кормить.
В обзоре учавствуют три позиции деталей (ссылки и цены присутствуют), но все они нужны для одной цели, сделать драйвер для светодиода.

Сразу извиняюсь за заглавное фото, оно упорно пытается масштабироваться по своему, исправить я не смог, более правильное на странице продавца.

Все знают, что светодиоды питаются током, желательно стабилизированным, что бы не менялась яркость при изменении напряжения. Для этой цели служит драйвер, по сути стабилизатор тока.
Ограничивать ток можно простыми микросхемами типа LM317 и специально предназначенными для этого стабилизаторами тока (на муське есть обзор одной такой детали), но они выделяют обычно достаточно много тепла, так как имеют низкий КПД. А ведь преимущество светодиодов как раз в высоком КПД.
Более интересными являются импульсные стабилизаторы тока, они посложнее, но имеют гораздо больший КПД, особенно если напряжение питания сильно отличается от напряжения на светодиоде.
Да, многие скажут что такой драйвер проще купить в Китае и не заморачиваться, соглашусь.
Но ведь всегда приятнее сделать что то своими руками. Собственно я так и решил, заказывая компоненты для драйвера.
Возможно я изобретаю велосипед. Но в обзоре учавствуют компоненты, которые пригодятся для многих других задач, и возможно многим будет полезна информация о том, что на продают и что мы получаем на самом деле.

Начну собственно с микросхемы. Это довольно хорошо известная любителям светодиодов PT4115. описание — www.micro-bridge.com/data/CRpowtech/PT4115E.pdf
Микросхема имеет вывод для управления яркостью. Вход, насколько я понял, может управляться и ШИМом или изменением напряжения. Вход довольно высокоомный, так как при прикосновении к этому выводу светодиод начинал мерцать с частотой 100Гц.

Стоимость лота из 10 штук — 2 доллара.
После заказа микросхемы продавец отписался что посылка будет без трека и спросил, устроит ли это меня, я решил что 2 доллара не те деньги что бы сильно беспокоиться и дал добро.
Через некоторое время в почтовом ящике я обнаружил конверт.

Внутри был пакетик с необходимыми мне микросхемами.

Проверил одну микросхему, подключив ее навесным монтажом, отписал продавцу что все в порядке, подтвердил получение и стал ждать остальные детали.

Их уже принесли мне на дом (впрочем как и следующий заказ).
Они были упакованы в картонную коробочку, хотя мне такая мера кажется излишней.
К слову у нас такие дроссели стоят значительно дороже, да и покупал я их не только для этого.

Собственно дроссели, Индуктивность 68 мкГн, ток 1.6 или 1.8 Ампера (у продавца не указано, потому ориентировочно), размеры 12х12х7мм.

Замер индуктивности показал отклонение в пределах погрешности.

Аналогично первому случаю подтвердил заказ, оставил хороший отзыв.

Ну и в конце пришли диоды Шоттки. Так как вещь в хозяйстве нужная, то заказал я их сотню.
Хотел больше, но не стал рисковать.
aliexpress.com/item/Free-Shipping-100pcs-IN5822-SS34-DO-214AC-1N5822-SMD-Schottky-Barrier-Diodes/882503650.html
Цена лота из 100 штук 5.26 доллара. У нас они тоже стоят дороже.

Диоды промаркированы как SS34, на самом деле они меньше, по габаритам и характеристикам полностью соответствуют диодам SS24. www.onsemi.ru.com/pub_link/Collateral/SS24-D.PDF
Сделал замер падения напряжения на диоде при токе в 1 Ампер и меня он устроил.

На этом часть закупок на Алиэкспресс закончилась.
В принципе на этом можно было и обзор закончить, но купить детали и не опробовать их в деле было бы неправильно. Потому естественно было решено довести дело до какого то логического конца.

Когда был у нас на рынке, попутно купил smd резисторы 1206 сопротивлением 1 Ом для датчика тока.
Думал сначала купить сразу низкоомные резсторы как в даташите на микросхему, но они выходят значительно дороже и если захочется настроить на разные токи, то надо покупать несколько номиналов, в общем неудобно, а резисторы 1 Ом я и так иногда использую.
в итоге получилось, что 1 такой резистор примерно соответствует току 0.1 Ампера, два параллельно 0.2 Ампера и т.д. smd резисторы и конденсаторы удобно паяются друг на друга потому можно легко подбирать необходимый ток.
Конденсаторы на входной фильтр питания и обрезки текстолита у меня были, а больше ничего не требуется.

Ну в общем стал я изобретать свой велосипед драйвер. накидал побыстрому платку в Спринте, схема из даташита, потому придумывать ничего не пришлось.
подобрал кусочек текстолита что бы сделать сразу 5 плат (планирую переделать 5 галогеновых светильников на светодиоды).

Печатная плата в Спринте 6

Перенёс на текстолит.

Вытравил, просверлил отверстия, порезал на отдельные платки, пролудил дорожки и промыл от остатков флюса.

Собрал все необходимые компонеты

На выходе получилась такая платка, она больше по размерам чем продающиеся у китайцев, но имеет более мощный дроссель и два параллельных диода, соответственно меньшие потери и большую надежность, а габариты мне были совершенно некритичны.

После этого естественно захотелось проверить (куда же без этого).
Проверял с этими светодиодами — mysku.ru/blog/aliexpress/24091.html

Попутно выяснилось, что микросхема ток стабилизирует нормально, но все равно при полуторакратном повышении напряжения на входе, ток на выходе хоть несильно, но меняется.
Но я немного грешу на то, что может быть большая погрешность из-за пульсирующего тока (выходной ток измерял последовательно со светодиодом).
Можно было конечно померять ток при помощи резистора и осциллографа, но я счел это излишним, так как хорошо было заметно переход с линейного режима до ограничения тока, и последующий переход в режим стабилизации в режиме с ШИМ стабилизацией.

Номинал шунта был 1/6=0,166 Ома.

При таких параметрах на входе, на выходе был ток 0.7 Ампера.

При таких ток на выходе был 0.65 Ампера

Перед пороговым напряжением перехода в режим ШИМ стабилизации я получил максимальный ток —

При плавном повышении напряжения питания, входной ток сначала плавно рос, после перехода в режим стабилизации и дальнейшем повышении начинал плавно падать, что говорит о работе ШИМ стабилизации.
Кстати, при очень плавном повышении напряжения питания заметен переход, яркость светодиода сначала плавно увеличивается, после перехода скачкообразно снижается процентов на 10, после этого (при дальнейшем повышении входного напряжения) больше не меняется.
Видимо так микросхема отрабатывает включение ШИМ стабилизации.
Нагрев при токе 600мА практически не чувствуется, бесконтактно мерять нечем, а контактное измерение внесет большую погрешность.
Пробовал давать на выход 1 Ампер, нагрев конечно увеличивался, но несильно. да и нагрев был только у микросхемы. В общем остался доволен.

Спросите почему не купил готовое на том же Али?
-Детали пригодятся и в других поделках.
-Хотелось немного «размять руки».
-Затраты на все компоненты получились примерно 1 доллар на 1 плату.
-Решил протестировать не готовое устройство, а детали, так как их применяют не только в драйверах.
-На выходе получил устройство надежнее, чем предлагают магазины Китая.

Очень надеюсь, что данный обзор будет полезен.

Простая схема драйвера для светодиодной лампы на 220 вольт для сборки своими руками

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа. Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Читайте также:  Короб для открытой проводки
Рейтинг
( Пока оценок нет )
Загрузка ...
×
×
Adblock
detector