Графеновый фотодетектор интегрируется в компьютерную микросхему

Новости: Технологии

Фотодетектор на основе графена и квантовых точек бьет новый рекорд

of your page –>
Tweet

Ученые Института фотоники (the Institute of Photonic Sciences (ICFO)) в Барселоне, (Испания) создали новый высокочувствительный фотодетектор на основе графена и квантовых точек. Светочувствительность нового устройства в миллиард раз выше, чем у ранее созданных фотодетекторов на основе графена. По мнению ученых, он может стать идеальным вариантом для огромного количества различных приложений: световых сенсоров, солнечных элементов, инфракрасных камер ночного видения, биомедицинских томографов и др.

«В нашей работе нам удалось скомбинировать графен с полупроводящими нанокристаллами и достичь совершенно новых параметров по светочувствительности и конверсии световой энергии в электрическую», – рассказал в интервью nanotechweb.org один из руководителей исследования Герасимос Константатос (Gerasimos Konstantatos). «В частности, мы рассматриваем нанесение нашего фотодетектора на ультратонкие и гибкие подложки и интеграцию его в устройства существующих компьютерных чипов и камер», – добавил другой научный руководитель проекта Франк Коппенс (Frank Koppens).

Графен представляет собой монослой углерода с гексагональной двумерной кристаллической решеткой, напоминающей соты. Благодаря своим уникальным свойствам этот материал находит применение в бесчисленном количестве технологических приложений и в будущем может заменить кремний в производстве электроники. Одним из таких свойств является необычайно высокая электропроводимость, обусловленная тем, что электроны в графене ведут себя как релятивистские частицы с нулевой эффективной массой (дираковские частицы с нулевой массой покоя), т.е. движутся с чрезвычайно высокими скоростями.


Графен с квантовыми точками (Ист: F. Koppens / Nature Nanotechnology).

Графен также является перспективным материалом для фотоники, так как имеет идеальную «внутреннюю квантовую эффективность» – практически каждый фотон, поглощенный материалом, образует электрон-дырочную пару, которая далее может преобразоваться в электрический ток. Благодаря дираковским электронам графен может поглощать свет любого цвета (весь спектр).

Однако, все не так замечательно, как кажется на первый взгляд, «внешняя квантовая эффективность» графена очень низка – он поглощает менее 3% падающего на него света.

Выделение графена

Научные группы Коппенса и Константатоса выделили «частицы» графена из кусочка высококачественного графита по методу «скотча». Этот метод, впервые использованный в 2010 г. Нобелевскими лауреатами Андреем Геймом и Константином Новоселовым, заключается в нанесении на кусочек клейкой ленты графита и последующих процессах склеивания и расклеивания ленты до тех пор, пока среди черных блестящих фрагментов графита на ней не будут видны несколько прозрачных серых частичек. Далее исследователи приклеили ленту с получившимися серыми частичками к подложке и затем удалили ее.

«На подложке мы можем видеть кусочки графита различной толщины и искать среди них те, которые имеют наименьший контраст, – это и есть графен», – объясняет Коппенс, – «Удивительно, что мы можем видеть слой материала толщиной в один атом невооруженным глазом, это возможно только благодаря необычному взаимодействию графена со светом».

Комбинация с квантовыми точками

С помощью нанолитографии ученые присоединили к образцу графена два золотых электрода для последующих электрических измерений. Электроды были установлены с субмикронной точностью в процессе, при котором золото испарялось из резистного шаблона для литографии, специально вычерченного для «частиц» графена электронно-микроскопической пушкой. Следующий шаг заключался в комбинации графена с коллоидными полупроводящими квантовыми точками, фоточувствительными к углеродному материалу.

«Мы выбрали квантовые точки благодаря их уникальным оптоэлектронным свойствам», – сказал Константатос. Эти материалы могут быть «настроены» на поглощение широкого диапазона длин волн светового спектра благодаря способности абсорбировать свет различных длин волн в зависимости от размеров нанокристаллов. Причем они обладают очень высокой интенсивностью поглощения. Более того, квантовые точки могут быть получены в растворе, в процессе напыления, а также методами центробежного литья и струйной печати на любой подложке, включая графен, при низких температурах и на воздухе – те существенные преимущества, которые обеспечивают низкую себестоимость производства и простоту технического исполнения.

Ученые использовали квантовые точки на основе сульфида свинца, потому что область энергий их запрещенной зоны соответствует к следующим технологически важным областям спектра: коротко-волновой и близкой к инфракрасной.

«Важная часть наших экспериментов касалась лигандного обмена – для сшивки квантовых точек с короткими молекулами (длиной около 0,2 нм) и присоединения их к графену», – говорит Константатос. «Этот этап был необходим для пассивации поверхности квантовых точек и также возможности эффективного перехода зарядовых носителей в графен и устранения нежелательной рекомбинации электронов и дырок, которая бы снизила количество тока, произведенного конечным фотодетектором». «Основная проблема заключалась в том, чтобы «сшить» электрические контакты между полупроводящими нанокристаллами и графеном, сохранив при этом высокое качество и необычайную электропроводимость материала», – добавил ученый.

Завершив нанесение тонкой пленки квантовых точек на графен, ученые исследовали полученное устройство, освещая его различными длинами волн и регистрируя соответствующее сопротивление. Фотодетектор реагировал даже на самые малые количества света (практически полную темноту).

Транзисторный механизм с фотодетектором на основе графена и квантовых точек (Ист: F. Koppens / Nature Nanotechnology).

После того, как устройство было собрано в транзисторный механизм, ученые смогли изменять плотность носителей заряда, варьируя напряжение на управляющем электроде. «Благодаря этим измерениям мы смогли очень точно определить внутреннюю квантовую эффективность фотодетектора, она составила свыше 25%», – заявил Коппенс. Использование комбинированного материала «квантовые точки — графен» позволило поднять число одновременно генерируемых электронов на один поглощённый фотон с 1 до 10 8 , в результате уровень чувствительности фотодетектора вырос сразу на девять порядков. «Такой высокий показатель обусловлен тем, что квантовые точки способны очень эффективно поглощать свет, а переход заряженных частиц между двумя этими материалами происходит очень интенсивно», – добавил он.

«Наш детектор может быть использован в цифровых камерах, камерах ночного видения, томографах, а также в ряде других высокочувствительных приложений. Я думаю, его гибкость позволит стать ему идеальным вариантом для гибких солнечных элементов, которые можно будет размещать на объектах любых форм», – говорит Константатос.

Сейчас группа ученых планирует увеличить размер детектора, создав широкоформатные матрицы на его основе. «Мы ожидаем, что в ближайшем будущем большинство автомобилей будут оборудованы системами ночного видения, и наши матрицы могли бы стать основой для них», – заметил Коппенс. Исследователи собираются продолжить работу над улучшением характеристик своего детектора, а именно добиться возможности регистрировать единичные фотоны.

Создан фотоэлемент на основе графена

Сразу три группы физиков: из Австрии, Гонконга и из США представили прототипы фотодетекторов на основе графена. Эти устройства преобразуют инфракрасные оптические сигналы в электрические импульсы, причем эффективность графеновых фотодетекторов выше, чем у аналогичных устройств традиционного типа. Все три работы опубликованы журналом Nature Photonics (1, 2, 3) и кратко их суть пересказана в сообщении Nature News.

Все три разработки несколько различаются между собой, однако все они используют ключевую особенность графена, способность преобразовывать в электрические импульсы световые кванты с разной энергией. Традиционные фотодетекторы работают за счет того, что квант света передает носителю заряда энергию, достаточную для преодоления потенциального барьера, зазора между энергетическими уровнями в полупроводнике, но графен не является «полноценным» полупроводником и у него нет так называемой запрещенной зоны.

Из-за отсутствия запрещенной зоны графеновые детекторы оказались способны регистрировать (в случае с разработкой группы из Китайского университета в Гонконге) кванты света в среднем инфракрасном диапазоне, с длиной волны от 1,55 до 2,75 микрометров. Авторы утверждают, что их детектор способен функционировать при комнатной температуре, хотя германиевые аналоги с чувствительностью в том же диапазоне требует охлаждения жидким азотом. Как поясняется в Nature News, работа при комнатной температуре может упростить выявление химических веществ в атмосфере и сделать более доступными биохимические исследования в диагностических целях.

Читайте также:  Охрана квартиры с оповещением по телефонной линии

Материалы по теме

Графеновые микросхемы будущего могут стать бумажными

Исследователи из лаборатории Джонатана Клауссена Университета штата Айова, предпочитающие называть себя наноинженерами, ищут способы использования графена и его впечатляющих возможностей в создаваемых ими сенсорах и других технологиях. Речь идет о технологии, позволяющей печатать графеновые микросхемы на бумаге при помощи струйного принтера. Разработанный учеными метод характеризуется низкой себестоимостью, что очень важно для технологий, которые предполагается использовать для реальных девайсов.

Инженеры Университета штата Айова разработали реальную низкозатратную графеновую технологию. Фото Кристофера Гэннона (Christopher Gannon) из Университета штата Айова

Графен — удивительный материал — «медовые соты» углерода толщиной всего в один атом. Он превосходно проводит электричество и тепло, обладая также прочностью и стабильностью. Исследователи ищут возможности того, чтобы их небольшие лабораторные образцы, являющиеся плодом изучения свойств этого перспективного материала, нашли себе практическое применение.

В рамках недавнего проекта струйные принтеры использовались для печати многослойных графеновых плат и электродов. Проект позволил инженерам сделать вывод о возможности применения графена в гибкой, носимой и недорогой электронике. Можно ли сделать из графена сенсор глюкозы? Ведь для этого размер должен быть достаточно велик.

Проблема состоит в существующих технологиях. Печатный графен может повышать проводимость и производительность девайса. Но это всегда означает применение высокотемпературного и химического воздействия. И то и другое может вести к деградации гибкости и повреждению поверхности, на которую наносится печать, — пластиковой пленки или даже бумаги.

Так у ученых Супрема Даса (Suprem Das) и Джонатана Клауссена (Jonathan Claussen) появилась идея использования лазера для обработки графена. И эта идея сработала. Ученые обнаружили, что лазерная обработка напечатанных с использованием принтера многослойных графеновых электрических микросхем и электродов с применением процесса лазерной генерации в импульсном режиме повышает проводимость электричества, не повреждая бумагу, полимеры и другие используемые для печати хрупкие поверхности.

По мнению Клауссена, это открывает путь к коммерциализации и увеличению масштабов производства графена.

Результаты данного исследования были опубликованы в журнале Nanoscale. Среди направлений, в которых смогут с годами найти применение результаты данного исследования — сенсоры для биологических задач, системы накопления энергии, электропроводящие компоненты и даже электроника на основе бумаги.

Чтобы все это стало возможным, инженеры разработали контролируемую компьютером лазерную технологию и селективно облучаемый оксид графена, используемый при струйной печати. Такая обработка устраняет потребность в связующем материале («чернилах») и позволяет преобразовать оксид графена в графен, физически связывая друг с другом миллионы крошечных графеновых «чешуек». Этот процесс улучшает проводимость электричества более чем в тысячу раз.

Дас поясняет, что лазер позволяет обработать материал сильно насыщенными энергией фотонами, не разрушая при этом ни графен, ни поверхность, на которой осуществляется печать, поскольку воздействие лазером применяется локально.

Будучи локализованным, лазерный процесс также меняет форму и структуру печатного графена с плоской поверхности до трехмерной наноструктуры. Инженеры говорят, что 3D-структуры подобны крошечным приподнимающимся над поверхностью лепесткам. Эта неровность поверхности повышает электромеханическую реактивность графена, делая возможным его использование в химических и механических сенсорах.

В перспективе это позволит создавать не только сами сенсоры, но также и дешевые электромеханические электроды на основе графена, которые могут найти себе огромное множество применений, включая сенсоры, биосенсоры, топливные ячейки и медицинские устройства.

По материалам sciencedaily.com

Электромобили и теории заговора — это прям закадычные друзья. Куда ни взгляни — везде, где критикуют электромотор, можно прочесть просто тонну сообщений, что Тесла и другие электромобили — это супергерои автомобильного рынка, которые борются с невидимой тёмной рукой. Даже наши прошлые статьи столкнулись с некой долей негатива по этому поводу. Но это хорошо, лично мне […]

Если вы любите комиксы (и фильмы) Marvel, то знаете, что во вселенной, созданной Стэном Ли, самым прочным материалом на Земле является металл вибраниум. Из него, в частности, сделан щит Капитана Америки и костюм черной пантеры, в родной стране которого – Ваканде – он и был найден. В комиксах этот материал существует в нескольких вариантах и […]

Электромобили без сомнения очень скоро станут основным видом транспорта в наших городах. Они быстрые, экологичные, мощные, красивые и у них есть еще масса преимуществ. Мало кто не хотел бы купить себе красавицу Tesla. Этот феномен объясним, но электромобилей уже сейчас очень много и разобраться в них не просто. Для этого даже порой недостаточно знать марку […]

Графеновая электроника – чудо 21 века

В статье рассказывается о перспективах применения графена и углеродных нанотрубок в микроэлектронике.

Слушая глубокомысленные рассуждения государственных чинов о необходимости развивать нанотехнологии, невольно удивляешься нелогичности их поступков: на оборону выделяются средства, несравнимые с бюджетом науки. Притом, что сейчас деньги, вложенные в научные исследования, позволят не только радикально изменить жизнь людей, но и вплотную подойти к решению проблемы бессмертия человека.

Говоря о нанотехнологиях, в первую очередь приходят на ум открытие графена и углеродных нанотрубок. Именно с ними связывают ученые прорыв в области электроники и фармакологии в 21 веке. Создание квантовых компьютеров, систем считывания сигналов на клеточном уровне, нанороботов для лечения организма – это только малый перечень открывающихся возможностей. Сейчас эти возможности перешли из области фантастики в область лабораторных разработок.

Особая тема – это микроэлектроника. Современные микропроцессоры и чипы памяти уже преодолевают значение технологических норм в 10 нанометров. Впереди рубеж 4-6 нм. Но чем дальше двигаются разработчики по пути миниатюризации, тем сложнее задачи приходится решать. Инженера вплотную приблизились к физическим пределам кремниевых чипов. Те, кто интересуются современными микропроцессорами, знают, что их быстродействие затормозилось на тактовой частоте около 4 ГГц и дальше не увеличивается.

Кремний является прекрасным материалом для микроэлектроники, но обладает существенным недостатком – плохой теплопроводностью. И с ростом тактовой частоты и плотности элементов этот недостаток становится барьером на пути дальнейшего развития микроэлектроники.

Читайте также:  Резисторы. кодовая маркировка фирмы philips

К счастью, сегодня появилась реальная возможность использовать альтернативные материалы. Это графен, двухмерная форма углерода и углеродные нанотрубки, которые являются трехмерной кристаллической формой того же углерода. Уже первые результаты исследований привели к созданию графеновых транзисторов, работающих на частоте до 300 ГГц. Причем, опытные образцы сохраняли свои характеристики при температурах 125 градусов по Цельсию.

История открытия графенового чуда

Самозабвенно разрисовывая в раннем детстве стены комнат простым карандашом, мы не подозревали, что занимаемся серьезной наукой – производим опыты по получению графена. Взбучка от родителей, не оценивших научную ценность экспериментов, многих отвратила от науки, но не всех. В 2010 году двоим россиянам, сотруднику Манчестерского университета (Великобритания) Андрею Гейму и ученому из Черноголовки (Россия) Константину Новосельцеву присудили Нобелевскую премию за открытие графена – новой кристаллической модификации углерода, толщиной в один атомный слой.

Так в чем же состояла заслуга ученых и значение открытия? Для начала разберемся с самим предметом открытия. Графен – это кристаллическая двумерная поверхность (не пленка!) толщиной в один или два атомных слоя. Самое интересное состоит в том, что теоретически графен был «создан» физиками-теоретиками более 60 лет назад для описания трехмерных структур углерода. Математическая модель двумерной решетки прекрасно описывала теплофизические свойства графита и иных трехмерных модификаций углерода.

Но многочисленные попытки создать двумерные кристаллы углерода заканчивались неудачами. «Медвежью» услугу в этих поисках оказали теоретики, которые математически обосновали невозможность существования кристаллических поверхностей. Не верить им было трудно: ведь это были Лев Ландау и Пайерлс – крупнейшие физики- теоретики 20 века.

Они привели неоспоримые математические доводы, что правильные плоские кристаллические структуры неустойчивы, т.к. за счет тепловых колебаний атомы покинут узлы таких кристаллов и порядок нарушится. Ситуацию усугубило то, что в реальных экспериментах теоретические выкладки ученых получали полное подтверждение. Идею синтеза графена надолго забросили.

И только в 2004 году ученым удалось получить, а главное, доказать, что графен – это реальность. Для получения графена использовалась специальная методика химического скалывания графитовых кристаллических плоскостей. Похожие процессы происходят при рисовании карандашом по шершавым поверхностям, но требования к условиям отслоения образцов неизмеримо жестче.

Второй трудностью было доказательство существования графеновой структуры. Как можно наблюдать поверхность толщиной в один атомный слой? Авторы открытия говорят, что если бы не удалось найти способа наблюдения графена, то его не открыли бы до наших дней.

Остроумная методика наблюдения графена заключалась в формировании двумерной кристаллической поверхности на подложке из окиси кремния. А затем графен наблюдали в обычный оптический микроскоп. Правильная кристаллическая решетка графена создавала интерференционную картину, которая и наблюдалась исследователями.

Перспективы практического применения графена

Открытие графена вызвало реакцию, подобную разорвавшейся бомбы. После десятилетий полной уверенности, что двухмерной модификации углерода не существует, вдруг оказалось, что с помощью достаточно простых процессов его можно получать в неограниченном количестве. Только зачем?

Дело в том, что подобная модификация углерода обладает свойствами, которые, обычно сдержанные ученые, наделяют эпитетами фантастические, чудесные, уникальные. И им можно поверить. Сотни применений этого материала предложены уже сегодня, и каждую неделю появляется информация о новых возможностях графена.

Даже короткий перечень впечатляет: микрочипы с плотностью более 10 миллиардов полевых транзисторов на квадратный сантиметр, квантовые компьютеры, датчики размером несколько нанометров – это только в электронике. А еще аккумуляторные батареи фантастической емкости, фильтры для воды, которые задерживают любые примеси и многое другое.

Особые свойства графена позволяют не только эффективно отводить тепло, но и преобразовывать его обратно в электрическую энергию. Учитывая, что графеновая решетка (плоскость) имеет толщину в один атомный слой, несложно предсказать, что плотность элементом на чипе резко возрастет и может достигнуть 10 миллиардов транзистором на квадратный сантиметр. Уже сегодня реализованы графеновые транзисторы и микросхемы, смесители частоты, модуляторы, работающие на частотах выше 10 ГГц.

Не менее оптимистично относятся разработчики и к применению углеродных нанотрубок в микроэлектронике. На их основе уже реализованы транзисторные структуры, а недавно специалисты IBM продемонстрировали микросхему, на которой было сформировано 10 тысяч нанотрубок.

Конечно, сразу углеродные материалы не смогут заменить кремний в микроэлектронике. Но создание гибридных микросхем, в которых используются преимущества обоих материалов, уже выходит на коммерческий уровень. Не за горами тот день, когда в обычном мобильном устройстве появятся микропроцессоры, вычислительная мощь которых будет превышать производительность современных суперкомпьютеров.

Не стоит думать, что все эти применения – дело отдаленного будущего. В гонку практической реализации научного открытия включились гиганты электронной индустрии – корпорация IBM, Samsung и множество коммерческих исследовательских лабораторий. По мнению специалистов, в ближайшее десятилетие графен станет привычным материалом. А некоторые шутят, что Силиконовую долину в Калифорнии придется переименовывать на Графитовую.

Создан терагерцовый детектор на основе волн в электронном море графена

  • © lh3.googleusercontent.com

Рисунок. Принципиальная электрическая схема транзисторного детектора терагерцового излучения (слева) и изображение реального прибора в оптическом микроскопе (справа). Справа вверху изображена антенна-бабочка, в центре которой размещен детектирующий элемент — графеновый транзистор. Слева: канал транзистора из двухслойного графена (bilayer graphene, BLG) зажат между кристаллами гексагонального нитрида бора (hBN), весь «сэндвич» находится на подложке окисленного кремния (SiO2/Si). Два лепестка терагерцовой антенны подключаются между истоком и затвором (левый и верхний электроды), сигнальное напряжение ΔU считывается между истоком и стоком (два крайних электрода)

Международная группа ученых из МФТИ, МПГУ и университета Манчестера создала детектор терагерцового излучения на основе графена, использующий возбуждение волн электронного моря — плазмонов. Работа опубликована в престижном журнале Nature Communications.

Существующие детекторы в терагерцовом диапазоне обладают высоким уровнем шумов. Между тем, использование терагерцовых волн сулит повышение скорости передачи данных в Wi-Fi-системах, развитие новых неинвазивных методов медицинской диагностики, а также открытие новых объектов в радиоастрономии.

  • © mipt.ru

Любая система беспроводной передачи информации предполагает наличие источников и детекторов электромагнитных волн. Однако не для любых волн на шкале электромагнитных излучений имеются такие источники и детекторы. Например, для волн с частотами в окрестности одного терагерца (длина волны 0,3 мм) источники либо потребляют огромную электрическую мощность (как вакуумные лампы), либо требуют низких температур (как квантовые каскадные лазеры).

Детектор и спектрометр в одном флаконе…

Нынешняя работа группы как раз представляет долгожданное решение проблемы резонансного детектирования терагерцовых волн. Созданный учеными фотодетектор представляет собой слой графена, подключенный парой контактов к терагерцовой антенне, с другой пары контактов считывается сигнальное напряжение. Слой графена играет роль резонатора для плазмонов. Ключевыми идеями, позволившими достичь резонанса, оказались «упаковка» графена между двумя кристаллами нитрида бора, использование двухслойного графена вместо однослойного, а также выверенные геометрические пропорции детектирующего элемента. В сэндвиче «нитрид бора — двухслойный графен — нитрид бора» примеси выталкиваются на края образца, давая путь для беспрепятственного распространения плазмонов. Двухслойность же графена открывает огромную свободу в электрической настройке скорости волн. С помощью напряжения на управляющем электроде (так называемом «затворе») авторам удалось вводить и выводить детектор из состояния резонанса, переключаясь между более чем десятью разными гармониками.

«Наш детектор является, по сути, компактным спектрометром терагерцового излучения, то есть по его сигналу можно узнать не только интенсивность света, но и его частоту. В лабораторных спектрометрах это достигается путем перемещения зеркал. Здесь же прибор имеет размер в несколько микрон, а спектроскопия может осуществляться путем изменения электрического напряжения», — комментирует Георгий Федоров, один из авторов статьи, заместитель заведующего лабораторией наноуглеродных материалов МФТИ.

… и новый метод фундаментальной науки

Хотя создание компактного детектора-спектрометра терагерцового излучения уже является важным практическим достижением, авторы вдобавок показали ценность данного устройства и для фундаментальной науки. Измеряя ток детектора при изменении концентрации электронов и частоты, можно изучать свойства самих поверхностных плазмонов — например, длину волны и время затухания. Раньше для этих же целей в лабораториях обычно использовался сканирующий ближнепольный микроскоп — прибор со сложной системой линз и зеркал, занимающий целый оптический стол.

«Наши устройства, помимо своего практического использования, предлагают еще и удобный метод для исследования плазмоники в двумерных материалах. Используя это метод, мы обнаружили новый необычный тип волн в электронном море графена, что послужит основой нашей дальнейшей деятельности», — поясняет Денис Бандурин, один из авторов статьи, научный сотрудник лаборатории физики конденсированного состояния вещества в Манчестерском университете.

Исполнение мечты о резонансном детектировании излучения в графене, родившейся почти сразу после открытия графена, не является для авторов поводом расслабиться и прекратить работу.

«Наша работа ставит больше вопросов, чем дает ответов. Эксперимент показывает, что преобразование терагерцового излучения в постоянный ток идет не совсем по предсказанным законам. Также контрастность резонансов не столь хороша, как утверждает простая теория. Поначалу это огорчает, но затем заставляет нас искать подводные камни, приводящие к затуханию плазмонов. Некоторые из них мы уже обнаружили. Когда их удастся устранить, спектр применений плазмонных детекторов станет еще шире», — рассказывает Дмитрий Свинцов, один из авторов работы, руководитель лаборатории оптоэлектроники двумерных материалов МФТИ.

Работа российской части коллектива была поддержана Российским научным фондом.

В МФТИ показали, что коммерчески доступный «грязный» графен пригоден для детекции терагерцевого излучения

Есть огромный потенциал использования терагерцевых волн в медицине, системах беспроводного интернета и астрофизике. Это излучение является безопасным для человека и может заменить рентгеновское. Скорость передачи данных в Wi-Fi-системах может значительно увеличиться с использованием терагерцевых волн. Кроме того, часть слабо исследованного космического излучения лежит в данном диапазоне. Ученые ищут максимально технологичное решение на основе доступного, «грязного» графена.

Российские ученые из Московского физико-технического института (МФТИ) и Физико-технологического института им. К.А. Валиева Российской академии наук (ФТИАН имени К.А. Валиева РАН) обнаружили резонансное поглощение терагерцевого излучения в коммерчески доступном графене. Это является важнейшим шагом на пути к созданию эффективного детектора терагерцевого излучения. Результаты исследований опубликованы в журнале Physical Review Applied.

Графеновая оптоэлектроника

С момента присуждения в 2010 году Андрею Гейму и Константину Новосёлову Нобелевской премии по физике за получение графена и изучение его свойств интерес исследователей к этому материалу не утихает. Графен является истинно двумерным материалом, то есть состоит из одного атомарного слоя углерода, отчасти благодаря чему обладает уникальными свойствами: он тонкий, но прочный, непроницаем даже для атомов гелия, имеет высокую электро- и теплопроводность. Благодаря высокой подвижности электронов графен является перспективным материалом для сверхбыстрых фотодетекторов, в том числе и для детекторов терагерцевых волн.

Терагерцевое излучение является очень непростым как для генерации, так и для детектирования. Вследствие этого даже появился термин «терагерцевая щель», означающий провал в мощности источников и регистрирующей способности детекторов в диапазоне от долей до единиц терагерц. Но на эту щель никто бы и не обратил внимания, если бы не огромный потенциал терагерцевых волн в медицине, системах беспроводного интернета и астрофизике. Это излучение является безопасным для человека и может заменить рентгеновское при диагностике заболеваний внутренних органов. Скорость передачи данных в Wi-Fi-системах может значительно увеличиться с использованием терагерцевых волн. Кроме того, часть слабо исследованного космического излучения лежит в данном диапазоне.

Использование графена в качестве детектирующего материала способно помочь в создании быстрого терагерцевого детектора. Однако сам по себе монослой графена поглощает лишь около двух процентов падающего излучения, что недостаточно для эффективного детектирования. Одним из способов решения проблемы является сильная локализация поля вблизи графена, благодаря которой электромагнитная волна может «сцепиться» с электронами проводимости и резонансно раскачать их колебания. Такая комбинированная волна, состоящая из совместно колеблющихся электронов и электромагнитного поля, называется поверхностным плазмоном, а явление усиленного поглощения света благодаря возбуждению этих волн — плазмонным резонансом.

К сожалению, плазмонный резонанс не наблюдается в плоском слое графена, освещенном плоской электромагнитной волной: малая по сравнению с фотоном длина волны плазмона не дает свету возбудить плазмонные колебания. Преодолеть такое рассогласование позволяет специальная металлическая «расческа» вблизи графена с расстоянием между зубчиками менее микрона.

Графен: ожидание vs. реальность

К настоящему времени известны десятки способов получения графена, которые отличаются по трудозатратам и качеству получаемых образцов. Говоря о высокой электронной подвижности в графене, исследователи зачастую умалчивали о трудоемкой процедуре его получения. Лучший графен до сих пор получают методом механического отщепления. При этом графит зажимается между двумя липкими лентами, которые затем отрываются друг от друга, отделяя от графита более тонкий слой.

Такую процедуру с оставшимся на ленте слоем повторяют несколько раз, пока не начнут появляться места с монослоем графита — графеном. С таким графеном «ручной работы» получаются приборы, имеющие наилучшие характеристики. Так, ранее исследователи из МФТИ, МПГУ и университета Манчестера сообщали о создании резонансного терагерцевого детектора на основе инкапсулированного графена.

В методе механического отщепления площадь графена не превосходит микрометров, образцы изготавливаются по несколько месяцев, а налаживание такого процесса обходится очень дорого. Существует, однако, более простой, масштабируемый и технологичный метод — химическое осаждение из газовой фазы (CVD — chemical vapour deposition).

При этом в результате разложения газов (чаще всего смеси метана, водорода и аргона) на подложке из меди или никеля в специальной печке при высокой температуре формируется графеновая пленка. Только на основе такого графена можно масштабируемым образом создавать партии приборов, однако он имеет больше дефектов по сравнению с графеном, полученным отщеплением, вследствие чего обладает не такими хорошими характеристиками. Авторы данной работы решили пронаблюдать явление терагерцевого плазмонного резонанса именно в CVD-графене.

« На самом деле пленка CVD-графена не однородная, а состоит из сросшихся зерен — участков симметрично повторяющегося во все стороны кристаллического рисунка — подобно поликристаллу, — рассказала Елена Титова, соавтор работы, студентка МФТИ. — Границы зерен наряду с дефектами являются самыми слабыми местами графена, осложняющими работу с ним».

Больше года ушло у коллектива лаборатории на освоение ремесла работы с непослушным материалом в Центре коллективного пользования МФТИ. Параллельно с этим теоретический отдел лаборатории уверял, что никакого плазмонного резонанса пронаблюдать не получится. Дело в том, что эффективность резонанса определяется его добротностью — тем, сколько периодов поля проходит до того, как электрон столкнется с дефектом решетки. А добротность, по сделанным оценкам, оказывалась очень малой, так как электроны в CVD-графене постоянно сталкиваются с многочисленными дефектами. Это не мешает им, однако, иметь высокую подвижность: все дело в том, что электроны в графене обладают малой массой и за время между столкновениями успевают набрать большую скорость.

Теория & эксперимент

Вопреки пессимистичным теоретическим прогнозам о возможности наблюдения плазмонного резонанса в изготовленных образцах, авторы работы решились осуществить планируемый эксперимент. Смелость была вознаграждена, и в спектрах поглощения образца были выявлены пики, свидетельствовавшие о возбуждении плазмонного резонанса в графене.

« Дело в том, что дефект дефекту рознь, и электроны сталкиваются с разными дефектами при измерениях на постоянном токе и при измерениях терагерцевого поглощения, — пояснил Дмитрий Свинцов, один из авторов работы, руководитель лаборатории оптоэлектроники двумерных материалов МФТИ. — В эксперименте на постоянном токе электрон неизбежно столкнется с границами зерен на пути от одного контакта к другому. При облучении терагерцевыми волнами электрон в основном колеблется внутри одного зерна, почти не подходя к его границам. Поэтому дефекты, уменьшающие статическую проводимость, оказываются «безопасными» для терагерцевых детекторов».

Дальнейшей загадкой являлась частота резонансного возбуждения плазмонов, которая не соответствовала существующим теориям и имела принципиально другую зависимость от геометрических размеров решетки. Оказалось, что при близком расположении графена и решетки последняя модифицирует распределение поля плазмона и локализует его под металлическими штрихами, края которых играют роль зеркал для плазмонов.

Авторы работы сформулировали простейшую теорию явления, используя аналогии с приближением сильно связанных электронов в твердом теле. Эта теория описывает экспериментальные данные без подгоночных коэффициентов и в дальнейшем может быть использована для оптимизации терагерцевых детекторов.

Дизайнер: @tsarcyanide, пресс-служба МФТИ

Транзистор на основе графена с металлической решеткой

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector