Kb антенны квадрат. настройка и конструктивные варианты

КВ антенны “квадрат” (принципы работы)

Инж.К. СЕПП (UA3CT), канд. техн. наук А. Снесарев
(P 6/76)

Одной из причин, определивших заметный рост активности советских коротковолновиков и их успехи в международных соревнованиях, является широкое распространение направленных антенн. Наиболее популярными в нашей стране стали “квадраты” с двумя, тремя и более элементами формирования диаграммы направленности. Об этих антеннах и пойдет речь в статье. Основная цель, которую преследуют авторы,-дать рекомендации коротковолновику в выборе и настройке антенн, обобщив опыт советских и зарубежных коротковолновиков.

Сравнение “квадратов” и “волновых каналов”

Широкое распространение “квадратов” привело к необходимости сравнить их характеристики с параметрами другой популярной у радиолюбителей антенны – “волнового канала”.

В таблице приведены результаты измерений характеристик некоторых антенн “квадрат” и “волновой канал”, заимствованные из журнала “QST”, 1968, № 5. Из нее следует. что параметры обоих антенн примерно одинаковы, если сравнивать “волновые каналы”, имеющие на один элемент больше, чем “квадраты”. При одинаковом же числе элементов “квадрат” будет иметь усиление примерно на 2 дБ больше. По нашим данным эту цифру можно увеличить, по крайней мере, до 2,5 дБ, если выбрать оптимальными расстояния между элементами.

Усиление относительно
изотропного излучателя, дБ

Ширина диаграммы направленности
по уровню половинной мощности, град.

Чтобы понять физическую причину такой существенной разницы, рассмотрим направления токов (на рис. 1) в рамке – элементе “квадрата” и в полуволновом диполе – элементе “волнового канала”.

Из рис. 1 следует, что в формировании диаграммы “квадрата” принимают участие только токи, протекающие в горизонтальных частях рамки, поскольку поля от токов, протекающие в вертикальных частях взаимно компенсируются. Поэтому рамка эквивалентна системе из двух синфазно возбуждаемых укороченных вибраторов, разнесенных по высоте на расстояние L/4. Известно, что диаграмма направленности в вертикальной плоскости такой системы по сравнению с диаграммой одиночного диполя имеет меньший угол и, следовательно, ее усиление оказывается выше. Количественно выигрыш в усилении в зависимости от параметров и высоты подъема обоих элементов может составлять от 2,2 до 3,1 дБ. Этот выигрыш можно определить по формуле, справедливой с достаточной точностью для KB диапазонов:

A=40000/ФгФв где А – коэффициент усиления, Фг и Фв-ширина диаграмм направленности в горизонтальной и вертикальной плоскостях соответственно.

Подставив в формулу средние значения Фг=180° и Фв=135°для диполя, Фг=170° и Фв=80° для рамки, получим, что усиление диполя равно 1,64 раза или 2,15 дБ (по мощности), усиление рамки – 2,94 раза или 4,68 дБ. Таким образом, средний выигрыш в усилении составляет 2,53 дБ. Эта цифра реальна и подтверждается на практике.

Подобный же выигрыш достигается и при расположении рамки углом вниз, используемом во многих конструкциях. Этот вариант отличается от разобранного выше лишь тем, что в нем диаграмму направленности формируют горизонтальные составляющие токов, протекающих во всех четырех сторонах рамки, а поля от вертикальных составляющих компенсируются.

Можно отметить и еще одну особенность “квадрата”. Так как рамка длиной L образует симметричный замкнутый контур, влияние земли и окружающих предметов, ухудшающее характеристики антенн, оказывается меньшим.

Выбор оптимальной конструкции Под оптимальными мы понимаем такие конструктивные данные антенны, при которых обеспечивается максимальное отношение излучений вперед/назад при достаточно высоком усилении. Ввести это определение представляется необходимым из-за существования двух методов настройки направленных антенн – на максимальное усиление и на максимальное отношение излучений вперед/назад. Эти максимумы не совпадают, причем, как показывает практика, проигрыш в отношении излучений вперед/назад при настройке по первой методике оказывается большим, чем проигрыш в усилении во втором случае.

В процессе проектирования антенны радиолюбитель должен определить количество элементов, расстояние между ними, их размеры. Для решения первой задачи обратимся к рис. 2.

На нем показана зависимость усиления антенны А и отношение излучений вперед/назад В от числа элементов n. Графики построены по результатам измерений (совпадающим с расчетными данными) на антеннах “квадрат” с оптимальными характеристиками для диапазона 14 МГц. Как нетрудно заметить, прирост обоих параметров по мере увеличения числа элементов замедляется, причем это становится особенно ощутимым при n>3. Учитывая трудности, связанные с изготовлением и с настройкой многоэлементных антенн, авторы считают, что в большинстве случаев целесообразно ограничить число элементов тремя. По мнению же некоторых зарубежных радиолюбителей конструктивно более удобна четырехэлементная антенна ввиду симметричного (относительно вертикальной оси, проходящей через центр массы) расположения элементов. Окончательное решение вопроса мы предоставляем читателям.

Для выбора оптимальных расстояний между элементами рассмотрим зависимость усиления А от расстояния S, выраженного в долях длины волны L (рис. 3). На графике черным цветом показана зависимость усиления от расстояния выбратор – рефлектор двухэлементного “квадрата”. В заштрихованной области, соответствующей максимуму усиления (S=0,175-0,225L), оно практически не изменяется, поэтому в данном случае выбор расстояния в указанных пределах некритичен.

Для антенн с числом элементов более двух задача усложняется из-за введения дополнительных независимых переменных величин (для трехэлементной антенны – двух, для четырехэлементной – трех и т. д.). Поэтому целесообразно задаться одним из расстояний (например, между вибратором и рефлектором) и выбрать оптимальными другие расстояния. Так, если принять для трехэлементной антенны расстояние вибратор – рефлектор равным 0,2L, можно определить оптимальное расстояние вибратор – директор, пользуясь кривой, показанной на рис. 3. Очевидно, наибольшее усиление этот “квадрат” будет иметь при расстоянии вибратор – директор, равном 0,175L, и в этом случае при изменении расстояний от 0,14 до 0,21L уси-ление практически остается постоянным, хотя, как и следовало ожидать, из-за уменьшения широко полосности антенны зависимость усиления от S становится круче.

Для иллюстрации сказанного можно привести несколько преобразованный для “квадратов” на 14 МГц график из того же журнала “QST”. На основе исследования большого количества антенн была определена зависимость усиления от длины L траверсы для крепления элементов (рис. 4). Заштрихованные области на графике – практически возможные пределы изменения длины траверсы для антенны с данным числом элементов. Из графика следует, что антенны с укороченной траверсой уступают в усилении (двух- и трехэлементные – примерно на 2 дБ) антеннам, имеющим расстояния между элементами около 0,2 L.

Длина рамки вибратора lв может быть подсчитана по формуле:

где Ky -коэффициент удлинения, зависящий от числа элементов и отношения длины рамки к диаметру провода; Lр-длина волны, на которую рассчитывается антенна.

Для определения длины вибратора двухэлементного “квадрата” коэффициент удлинения принимают равным 1,01, при трех и более элементах он равен 1,015-1,02.

Длину рефлектора двухэлементного “квадрата” выбирают на 5-6% больше длины вибратора. Для трехэлементного “квадрата” длина рефлектора должна быть на 3-4% больше, директора – на 2,5-3% меньше длины вибратора; для четырехэлементного “квадрата” длина рефлектора должна быть на 2,5-3% больше, длины директоров – на 2% меньше.

Практически рефлектор и директор изготовляют немного короче, чем определено расчетом, чтобы с помощью короткозамкнутых шлейфов можно было их настроить.

Все сказанное ранее относилось к однодиапазонным “квадратам”. На практике же часто приходится прибегать к созданию многодиапазонной системы. Надо отметить, правда, что любое совмещение в вертикальной плоскости элементов, настроенных на разные частоты, особенно кратные двум (то есть 14 и 28, 7 и 14’МГц и т. п.), приводит к ухудшению основных характеристик антенны. Приведем два примера. Двухэлементный “квадрат” на 14, 21 и 28 МГц с рамками в разных плоскостях (так называемая конструкция “еж”) имеет усиление до 9 дБ и отношение излучений вперед/назад – до 24 дБ; те же характеристики аналогичного “квадрата”, выполненного на траверсе, не превышают 8 и 22 дБ соответственно. Трехэлементный “квадрат” на два диапазона (14 и 21 МГц) с разнесенными рефлекторами обеспечивает усиление до 13 дБ и отношение излучений вперед/назад – до 30 дБ; у трехэлементного трехдиапазонного “квадрата” (добавлен диапазон 28 МГц и рамки расположены одна внутри другой) эти характеристики ухудшаются соответственно до 11,5 и 27 дБ.

Для уменьшения влияния элементов, расположенных в одной плоскости и работающих на кратных частотах, можно, соответствующим образом подключив фидер, применить их поляризационную развязку (горизонтальную поляризацию для одного и вертикальную – для другого диапазонов).

Определенная расчетным путем развязка элементов диапазонов 14-28 МГц в трехэлементном “квадрате” достигает 20 дБ.

Для получения наилучших характеристик многодиапазонной системы желательно сохранить оптимальные расстояния между элементами для каждого диапазона. Однако здесь из-за конструктивных трудностей радиолюбители часто вынуждены идти на компромисс. Одним из примеров такого компромисса для трехэлементного “квадрата” на 14, 21 и 28МГц может быть достижение близких к оптимальным характеристик на первых двух диапазонах и худших – на третьем. На наш взгляд, такое решение вполне оправдано ввиду особенностей прохождения и различной загруженности этих диапазонов. В зависимости от конкретных требований к антенне радиолюбитель может выбрать другой вариант.

Настройка антенны «Двойной квадрат»

EW8AU
Владимир Приходько,
246027 Гомель а/я 68, Беларусь
Email — dmitry.by (at) tut.by

Перед установкой антенны, на рамках в месте крепления шлейфов установить временные приспособления для дистанционной регулировки шлейфов. Установить и закрепить симметрирующий мостик. Допустим, мы настраиваем антенну двадцатиметрового диапазона, центральная частота 14,150 МГц. Длина симметрирующего мостика должка быть равной 5 м 10

см. После этого для измерений параметров антенны нужно подготовить отрезок кабеля, равный или кратный лямбда 2, полуволновой повторитель, с учетом длины кабеля, входящего в симметрирующее устройство. Если мы применяем кабель с полиэтиленовым наполнителем, то с коэффициентом укорочения длина полуволнового повторителя равна 6,975м. Минимальная высота установки антенны -10 метров от земли. Измерительные приборы будут находиться у основания мачты, значит, длину кабеля выбираем 1,5 лямбда. Это будет равно 20м.925мм. Сразу следует пояснить, питание антенны будет осуществляться нерезонансным методом и общая длина кабеля от антенны до трансивера может быть произвольной. Отрезок кабеля, равный 1,5 лямбда нам нужен только для измерений и настройки антенны, потом он дополняется кабелем снижения до необходимой длины. Дополнительно можно проконтролировать длину кабеля 1,5 лямбда с помощью высокочастотного моста, но, как показывает практика в диапазоне КВ. расчетная погрешность настолько мала, что ей можно пренебречь.

Читайте также:  Электрошокер 30 ватт

Итак, подготовив антенну и кабель, поднимаем и устанавливаем антенну на мачту на высоту ее постоянной эксплуатации. Мачта расчаливается оттяжками, причем, если оттяжки в несколько ярусов, то сразу устанавливают все ярусы оттяжек, полный комплект. К мачте крепится временный технологический кронштейн, на котором установлен ГИР. ГИР должен находиться недалеко от шлейфа активного элемента рамки, и иметь возможность дистанционного управления. Для этого в схему ГИРа, параллельно конденсатору переменной емкости, необходимо поставить варикап. В идеальном случае, один элемент двойного квадрата должен иметь возможность передвижения, для регулировки расстояния между рамками. На кабель полуволнового повторителя установить коаксиальные реле типа РЭВ-15 по схеме Рис.1.

Если нет коаксиальных реле, коммутацию придется проводить вручную, переключая кабели согласно схеме. С одной стороны первого реле подключают высокочастотный мост для измерения активного сопротивления антенны. Желательно, чтобы мост своим разъемом прикручивался прямо на реле, без кабеля, в противном случае придется учесть этот кусок кабеля (от реле до ВЧ моста) и вычесть такой же отрезок из повторителя 1,5 лямбда. С другой стороны первого реле, через отрезок кабеля произвольной длины подключается второе репе, соединяющее ВЧ мост и кабель снижения, который идет к трансиверу. Кабель, соединяющий второе реле и ВЧ мост так же произвольной длины. В трансивере установить минимальную мощность, то есть такую, которая необходима для работы ВЧ моста. Со стороны активного элемента рамки, в направлении приема антенны, в дальней зоне не менее 1 лямбда поставить ВЧ генератор, нагруженный на небольшой диполь горизонтальной поляризации, размер плеч диполя примерно 0,5м. Антенна этого генератора должна находиться на такой же высоте, как и измеряемая антенна.

Настройку антенны проводят два человека. Один находится возле антенны, второй у трансивера. Если есть возможность, трансивер установить возле антенны, иначе придется наладить телефонную связь или воспользоваться портативными радиостанциями. Порядок работы при измерении и настройке. Включаем трансивер на прием и с помощью ГИРа определяем резонанс активной рамки. С пульта дистанционного управления ГИРом, изменяя смещение на варикапе регистрируем провал по напряжению, следя за показанием индикатора ГИРа. Установив (провал), сообщаем по телефону напарнику, который находится у трансивера. Он должен настроиться на сигнал ГИРа и сообщить частоту. Оператор, который находится у пульта управления ГИРом должен проманипулировать кнопкой питания, включая и выключая ГИР, чтобы убедиться в правильности настройки. Ведь можно ошибочно настроиться на несущую какой — нибудь мощной радиостанции. Определив резонансную частоту активной рамки, смотрим, в какую сторону по частоте нужно сместить резонанс рамки.

Подстройку производим регулировкой длины шлейфа активной рамки, контролируя приемником резонансную частоту. Настроив активную рамку на частоту 14,150, переходим к другой операции. Допустим, нам нужно настроить антенну на максимальное усиление вперед. Включаем генератор, находящийся в дальней зоне и работающий на частоте 14,150, следя за показаниями S-метра трансивера, подстраиваем шлейф рефлектора, на максимальную амплитуду сигнала. После настройки рефлектора, проверяем еще раз по ГИРу резонанс активной рамки. Резонанс может сместиться в сторону. Подстраиваем еще раз шлейф активной рамки. Теперь переходим к измерению входного сопротивления антенны. Переключаем коаксиальные реле, включаем трансивер на передачу (с необходимой для измерения мощностью) и, балансируя ВЧ мост, определяем активное сопротивление антенны на частоте 14,150. Если сопротивление отличается от 75 Ом, значит, неправильно выбрано расстояние между рамками. При сопротивлении, большем 75 Ом, рамки нужно сблизить, если меньше 75 Ом — раздвинуть. После коррекции расстояния между рамками необходимо еще раз провести измерения резонансной частоты активной рамки и по генератору, находящемуся в дальней зоне, еще раз настроить рефлектор. После этого делается еще одно измерение входного сопротивления антенны.

Допустим, мы настроили антенну по сопротивлению, но стрелка ВЧ моста при балансировке не доходит до нуля. Это говорит о том, что в антенне присутствует реактивность емкостного или индуктивного характера. Компенсировать эту реактивность можно настройкой симметрирующего мостика, укорачивая или удлинняя мостик: индуктивный характер 0,24 лямбда. Чтобы не удалять часть оплетки с кабеля симметрирующего мостика, можно воспользоваться емкостной закороткой. В конце мостика, возле перемычки, там, где оплетки кабелей соединяются между собой, на два параллельно идущих кабеля положить кусок мягкой медной фольги или белой жести прямоугольного сечения примерно 100х100 мм. Края фольги обвернуть вокруг кабеля с одной и другой стороны. Такая перемычка, охватывая каждый кабель, двигается по полиэтилену, позволяя замкнуть два кабеля по переменному току (типа емкостной закоротки). Таким образом, двигая эту перемычку, можно в небольших пределах компенсировать реактивную составляющую антенны.

Настроив антенну в резонанс и согласовав ее по сопротивлению, скомпенсировав реактивность, мы можем быть уверены, что и КСВ будет единица. Вообще КСВ — метр в основном служит только для контроля за состоянием антенны и фидера. Не понимая этого, можно настроить антенну по КСВ 1 и при этом иметь очень низкий КПД антенны, то есть превратить антенну в согласованную нагрузку. К тому же надо иметь в виду, что длинный кабель улучшает КСВ, это связано с потерями в кабеле. Поэтому настройка антенны с помощью одного КСВ — метра неверна. При настройке антенны можно применять простейшие самодельные приборы, такие как ГИР, ВЧ мост, а в качестве генератора, который установлен в дальней зоне, — самодельный генератор на фиксированную частоту с кварцевой стабилизацией. Если у Вас простейший ВЧ мост, не позволяющий увидеть реактивность, то есть определить, какого она характера, емкостного или индуктивного, это не беда. Просто, двигая перемычку на симметрирующем устройстве, Вы добиваетесь минимального отклонения стрелки при балансе моста; тем самым Вы компенсируете реактивность, не зная ее характера.

Если Вам при настройке антенны не удаюсь полностью компенсировать реактивность или подогнать сопротивление антенны под кабель, по ряду конструктивных или иных причин, пойти компромисс, подобрав общую длину кабеля от антенны до трансивера кратной лямбда/2. При этом Вы будете уверены, что антенна правильно настроена и согласована, а кабель запитан в режиме бегущей волны. Подбором длины кабеля Вы устраняете только небольшой процент рассогласования. Теперь насчет диаграммы направленности. Для корректных измерений диаграммы направленности необходимо создать определенные условия при установке образцовой и измеряемой антенны, что не всегда возможно для данного диапазона и окружающей обстановки. Например, в городских условиях среди железобетонных зданий с их краевым эффектом, в лучшем случае Вы снимете не диаграмму аправленности Вашей антенны, а голограмму данного микрорайона. Чтобы убрать влияние земли для диапазона 14 МГц, антенну пришлось бы поднять на высоту 80 м и отодвинуть зонд на несколько лямбда, что практически невыполнимо для данного диапазона. Поэтому достаточно измерить соотношение вперед – назад. После завершения настройки и согласования антенны, опустить антенну и заменить подвижные шлейфы рамок, впаяв жесткие перемычки необходимой длины.

EW8AU, Владимир Приходько,
246027, г. Гомель — 27, а/я 68
БЕЛАРУСЬ

Самостоятельное изготовление DVB-T2-антенны для цифрового ТВ

Для комфортного просмотра цифрового телевидения необходимы стабильный передающий сигнал и качественная приемная антенна. Мощность телесигнала зависит целиком и полностью от провайдера, потребитель повлиять на это не может, зато он может исправить ситуацию с приемом на своей стороне с помощью покупной либо самодельной антенны. Как изготовить своими руками простое, но эффективное устройство для цифрового ТВ, рассказано далее.

Самодельные антенны для приема ЦТВ

На территории Российской Федерации претворение в жизнь федеральной программы цифрового вещания в 2019 году ознаменовалось введением в строй двух мультиплексов с полностью бесплатным государственным пакетом из 20 телеканалов и 3 радиопрограмм. Каналы не зашифрованы, они передаются в открытом виде в дециметровом диапазоне волн. То есть для качественного приема цифрового общественного телевидения подойдет любая антенна, работающая в диапазоне ДМВ.

Немного теории. Размеры вибраторов (активных элементов любой антенны) должны быть равны полной длине волны, половине или ее четверти. В дециметровом диапазоне радиоволна имеет длину менее одного метра. Значит, размеры элементов должны быть согласованы с данной величиной.

В радиотехнической литературе описано множество приемных конструкций для ДМВ диапазона. Большинство из них будет прекрасно принимать и современное цифровое телевидение. Описанные далее популярные устройства, изготовить которые может каждый своими руками, имеют следующие характеристики:

Вариант конструкцииКоэффициент усиления, дБДальность приема без усиления, кмДальность приема с усилителем, кмРабочий диапазон, МГц
Петля из кабеля0 – 31515440–800
Антенна из алюминиевых банок3 – 51540470 – 622
«Бабочка»5 – 112070от 300 МГц
«Тройной квадрат91560300 МГц и выше
Антенна Харченко5 – 61050от 300 МГц
Логопериодическая антенна8 – 1230100более 300 МГц

Конечно, это далеко не все конструкции приемных антенн для цифрового телевидения, которые можно сделать в домашних условиях. Существует огромное число альтернативных вариантов, но большинству из них присущи определенные недостатки:

  • они технически сложные для повторения;
  • эффективность не слишком высокая (низкий коэффициент усиления);
  • слишком узкая полоса приема (требуются высокая точность изготовления и настройка);
  • необходимы дорогостоящие (дефицитные) материалы и компоненты.

Антенна цифрового ТВ, рекомендуемая для изготовления своими руками, должна быть эффективной, легкой для повторения, не содержать дорогих деталей и материалов. Этим параметрам полностью соответствуют рассмотренные ниже конструкции.

Антенна из кабеля

Простейшая антенна из отрезка коаксиального (телевизионного) кабеля выполняется в форме петли. Для ее постройки потребуются:

  • кабель;
  • инструменты (нож, плоскогубцы, кусачки, линейка);
  • ТВ-штекер для подключения к телевизору/приставке DVB-T2.
Читайте также:  Электропроводка в квартире правила прокладки проводов

Инструкция по изготовлению:

  1. Возьмите отрезок кабеля длиной 1,5–2 м, для этой цели лучше использовать провод с центральной жилой из меди (во многих дешевых кабелях последняя выполнена из непонятного сплава с внешним омеднением, его тоже можно применить, но результат будет несколько хуже).
  2. Снимите ножом с одного конца изоляцию с экрана и центральной жилы (длина участка 5 см), скрутите оголенные проводники в общий жгут.
  3. Отмерьте 20 см от этой точки, удалите внешнюю оболочку и оплетку (длина участка 5 см).
  4. Еще через 20 см снимите только внешнюю оболочку (также участок длиной около 5 см).
  5. Согните кабель кольцом, плотно намотайте скрученные в жгут жилу и оплетку на оголенный экран.
  6. Присоедините штекер к другому концу кабеля.

Увеличиваем сигнал WI-FI на 2.5 км – Антенна биквадрат (BiQuad)

Сегодня мы хотим тебе предложить конструкцию простой, недорогой и надежной антенны, которую можно собрать практически из подножного хлама!

Частоты работы Wi-Fi и WiMAX абсолютно идентичны и равняются 2.4-2.7 ГГц. Отличие кроется в кодировке сигнала и мощности передатчика, но для нашей антенны это совершенно неважно. Чтобы изготовить антенну, нам требуется знать длину волны. По формуле из курса физики ее довольно просто рассчитать. Достаточно разделить скорость света в вакууме на частоту волны. Не будем утруждать тебя долгими вычислениями. Скажем лишь, что ее длина составляет приблизительно 124 мм при 2.4 ГГц (начало рабочей частоты) и 111 мм в конце диапазона на частоте 2.7 ГГц. Чтобы создать антенну, работающую одинаково на всем диапазоне частот, мы сделаем сторону квадрата равной 30.5 мм, что составляет четвертьволновой диапазон.

Немного теории

Антенна состоит как бы из двух частей: рефлектора и резонатора. Резонатор – это сам двойной квадрат со стороной в четверть длины волны, а рефлектор – это металлическая часть, к которой все крепится. Естественно, что среди радиолюбителей этот простой и доступный вариант антенны используется уже не первый год, а сама эта система придумана очень давно. Данная антенна способна дать усиление от +6 до +10 дБ. Некоторые источники также сообщают, что если ее использовать вместе с параболическим зеркалом (обычной спутниковой тарелкой), то можно добиться усиления до +20 Дб. Для WiMAX это означает халявный Интернет на даче.

Изготовление

Начнем с резонатора. Для него тебе потребуется медная проволока диаметром 1.5-3 мм. Ее ты можешь достать где угодно, ибо в наше время это совсем не дефицит. Кроме нее тебе могут пригодиться молоток, пассатижи, паяльник, припой, линейка, канифоль или паяльный флюс, желательно ЛТИ-120, и руки, растущие из нужных мест. Надеемся, ты достаточно хорошо усвоил школьный курс геометрии и знаешь, как должен выглядеть квадрат. Сначала мы берем кусок проволоки длиной 244 мм и размечаем его через каждые 30.5 мм. Затем ты должен взять плоскогубцы и изгибать проволоку под углом в 90 градусов на каждой засечке. Следи, чтобы отклонения в разные стороны были минимальны и проволока не перегибалась никуда в другую сторону. Для простоты смотри чертеж.

Как только у тебя получился один квадрат, сделай второй, максимально на него похожий, с другого конца. Угол между сторонами квадратов должен составлять 90 градусов. У тебя должен получиться замкнутый контур. Концы проволоки можно спаять вместе. Далее откладываем в стону резонатор и принимаемся за рефлектор. Его можно изготовить вообще из чего угодно: из стенки корпуса от компа, старой завалявшейся железки, автомобильного номера…

Однако мы рекомендуем использовать для этого плату из фольгированного текстолита. Во-первых, там используется медь, сопротивление которой ниже, чем у железа, а во-вторых, текстолит способен выдерживать практически любые погодные условия, что позволяет вывешивать антенну прямо на улице. Для данной антенны желательно использовать одностороннюю плату 120х100 мм, однако, как показывает практика, 100х100 мм тоже вполне подходит. Тут нам понадобится еще и дрель. Также тебе потребуется высокочастотный разъем N типа в сборе. Ты должен измерить диаметр выбранного тобой разъема и просверлить по центру платы дырку для его вывода. Разъем вставляется с пустой стороны, а его выход – с фольгированой. После просверли еще дырочки маленьким сверлом по креплениям разъема и привинти его к плате. Подобные винтики несложно найти в любом хозяйственном магазине. К внутренней части разъема и к самой плате мы припаиваем по два куска той же проволоки так, чтобы расстояние от рефлектора до конца любой из них составляло 2.5 см. Далее ты должен взять резонатор и припаять его к этим ножкам. Постарайся сделать так, чтобы рефлектор и резонатор были параллельны друг другу. Изготовление антенны закончено, и мы приступаем к подключению и настройке

Подключение и настройка

Само собой, тебе потребуется как-то подключить готовый девайс к модему. Учти, все, что ты делаешь с гарантийным оборудованием, ты делаешь на свой страх и риск! Редакция не несет за это никакой ответственности.

Для начала сними верхнюю крышку модема. Делать это надо аккуратно, желательно тонкой отверткой или скальпелем. Начиная с одного конца, около разъема USB, затем, медленно поддевая крышечку, продвигайся дальше, пока она не откроется с одной стороны .Потом повтори ту же процедуру, но с другого конца. Сняв крышку, ты увидишь два маленьких разъема, заклеенных защитной бумажкой. Сними и ее! Если положить модем портом USB вниз, то нам нужен левый разъем. К правому даже не прикасайся! Теперь у тебя два пути: или покупать фирменный пикдейл (переходник), или сделать свой. Мы выбрали второй вариант, взяв антенный переходник от маленького горелого ТВ-тюнера и немного его модифицировав удалением внутреннего пластикового кольца. Но если у тебя подобной вещи нет, то лучше купи фирменный.. После тебе нужно подключить его к проводу. Провод следует использовать RG-6U, как наиболее подходящий по волновому сопротивлению. Чем меньше будет длина самого провода, тем меньше будут потери сигнала. В данном случае мы надели на один из концов провода обычный телевизионный штекер, идеально подходящий к нашему самодельному пикдейлу. На второй была водружена прикручиваемая часть высокочастотного разъема для подключения к антенне. После этого все соединяем вместе. У фирменного пикдейла есть специальное крепление к модему, мы же использовали скрепку и две канцелярские резинки. Несмотря на то, что выглядит конструкция достаточно хлипкой, она держится у нас в редакции вот уже четыре месяца.

Далее следует подвесить антенну на улице. Мы использовали мачту от активной телевизионной антенны и ее крепление. После этого надо подвести кабель к модему и собрать все воедино. Далее мы вылезаем на карниз (будь осторожен, не свались вниз!) и настраиваем антенну на точку доступа. Делается это просто: ты крутишь антенну потихонечку во все стороны и следишь за уровнем сигнала. Найдя точку, где сигнал будет максимальным, ты закрепляешь антенну как можно сильнее и забываешь про ее существование. Нам удалось добиться сигнала в 15 дБ там, где модем без антенны ловил 3-4, иногда 5 дБ. Практика показала, что у радиолюбителей такая антенна добивала на 2.5км.

Нам удалось достичь хорошего сигнала в месте, где по карте WiMAX провайдера приема быть не должно вообще. Методом проб и ошибок нами была сделана антенна, по своим характеристикам не уступающая фирменным, имеющимся в продаже. К тому же она очень универсальна и подходит как для Wi-Fi, так и для WiMAX. Разница только в типе подключаемого оборудования. За время тестирования были и сбои, и неполадки, однако не по вине антенны. Единственной проблемой была ворона, которая чуть не скинула всю конструкцию с 12-го этажа. Сигнал получился стабильным, и скорость соединения возросла в разы. Единственной бедой было то, что мы лишились гарантии на модем. Хотя она, скорее всего, и не понадобится.

Успехов тебе, радиолюбитель!

Антенна биквадрат (BiQuad) версия№2

Это моя измененная конструкция антенны. А изготовил антенну я полностью из алюминия. Так как он не паяется, я крепил все на болты. Антенна полностью соответствует размерам. На практике я её не применял, но посоветовавшись с радиолюбителями и с теми, кто изготовлял такие антенны, сказали, что должно работать!

Антенны “квадрат” для диапазонов 2 м и 70 см с переключаемой поляризацией.

Автор В. Дмитриев (UA3AGU), А. Лажечников (RA3DJB)
Среда, 14 Январь 2009
Статья, предлагаемая вниманию радиолюбителей, как начинающих освоение УКВ, так и имеющих опыт проведения «дальних» связей, явилась итогом трёхлетних экспериментов по разработке легко повторяемой направленной антенной системы, сочетающей простоту конструкции с неплохим усилением и возможностью использования разных поляризаций

.
Выбор « замкнутой» антенны продиктован следующими соображениями:

  1. .Максимальное ослабление влияния окружающих антенну «проводящих» конструкций, в первую очередь крыши здания и различных электрических линий.
  2. Широкий угол раскрыва основного лепестка диаграммы направленности в вертикальной плоскости, что позволяет проводить уверенные спутниковые связи в широком диапазоне элевации космического ретранслятора.
  3. Конструктивная прочность и ветроустойчивость антенной системы.
  4. Возможность получения 50 – ти Омного входного сопротивления без применения дополнительных согласующих устройств.
  5. Относительная компактность конструкции, что позволяет её использование в «балконном» или выездном варианте.
  6. Широкополосность, позволяющая охватить весь выделенный диапазон.

На первом этапе определения возможностей многоэлементных рамочных антенн были опробованы 4-х элементные квадраты на 144 МГц и 435 МГц в горизонтальных поляризациях для проведения радиосвязей в дальнем тропосферном прохождении, через радиолюбительские спутники АО-51, VO-52, FO-29, AO-7, а также с использованием отражений от метеорных следов. Результаты обнадёжили: в соревнованиях на кубок Ю. А. Гагарина в 2006 и 2007 годах UA3AGU был «крепким середняком», в декабре 2007 удалось провести несколько MS связей в «Геменидах» (QRB до 1800 км), в спутнике АО-7QSO’s с Японией. Во всех случаях использовался «голый» FT-736R.
Александр (RA3DJB), моделируя 4-х элементные антенны в программе MMANA, попробовал ввести пятый элемент в виде разрезного вибратора между рамками рефлектора и основного вибратора, питаемого отдельным кабелем для реализации вертикальной поляризации на диапазоне 2 метра. Программа показала только незначительное снижение коэффициента усиления, поэтому мною (UA3AGU) была проведена доработка изготовленной и настроенной антенны и практические испытания. На этом втором этапе выявились следующие особенности:

  1. Вследствие близкого расположения кабеля, питающего рамку в нижнем плече к разрезному вибратору, потребовалось укорочение последнего примерно на 14-20 мм всей длины.
  2. Кабель питания разрезного вибратора, проложенный по оси антенны, необходимо опускать за рефлектором на расстоянии хотя бы четверть длины волны, поэтому длина траверсы увеличивается.

При практическом испытании корреспонденты отмечали стабильную разницу силы сигнала от 2 до 4 баллов при смене поляризации. Мы с Александром ожидали, что смена поляризации потребуется не только для повседневных связей, но и для спутников, поэтому аналогичная работа была проведена и для 4-х элементов на диапазон 70 см., но двухлетняя практика показала, что в спутниковой связи этого не требуется. В подтверждение могу процитировать оценку работы квадратов Леонидом (UR5MQD), который изготовил их по нашим с Александром размерам без дополнительных диполей и сравнил с имевшимися у него спиральными антеннами. Он сообщил мне, что предпочтительно использовать квадраты.

В конструкции квадратов на 70 см. для вертикальной поляризации хорошо настроился петлевой вибратор, как менее восприимчивый к близко расположенным фидерам

Последний, третий этап наших работ, заключался в оптимизации количества элементов антенн для наилучшего соотношения усиления с входным сопротивлением и габаритными размерами. Моделирование в программе ММАНА показало существенный рост усиления при увеличении количества элементов до 5-ти для диапазона 2 метра и до 7-ми элементов для 70-ти сантиметров. Каждый последующий элемент даёт прибавку в усилении в пределах 0,5 – 0,3 Дб, но существенно меняет входное сопротивление от оптимальных 50 Ом и удлиняет траверсу. Так родилась антенна, представленная на фотографии.

Геометрические размеры представленной антенной системы следующие:

Антенна двойной или тройной квадрат для Цифрового ТВ своими руками

Многие дачники не желают покупать хорошие антенны для своих домиков, так как постоянно в них не проживают. Для того чтобы во время отдыха от садовых работ смотреть телепрограммы они часто задействуют устройства с волновым сопротивлением 75 ОМ. Выбор в пользу самодельных антенн двойной квадрат обусловлен низкой стоимостью расходных материалов, а также скоростью прочеса изготовления.

Что нужно для изготовления антенны двойной квадрат

Сегодня на смену аналоговому телевидению пришло цифровое ТВ. Благодаря новым технологиям люди получили возможность смотреть передачи в отличном качестве, причем существенно увеличилось количество доступных каналов. Для подключения к цифровому ТВ достаточно иметь хороший телевизор, дешифратор и комплектующие, для установки. Чтобы получать на свое оборудование видеосигнал, необходимо иметь дециметровую антенну двойной квадрат. Ее нет смысла покупать, так как, имея под рукой минимум материалов, можно за считанные минуты изготовить устройство самостоятельно.

Антенна двойной квадрат по внешнему виду напоминает пару соединенных между собой ромбов. Несмотря на примитивность конструкции, она будет довольно хорошо принимать сигнал. Для ее изготовления можно задействовать любой материал, способный проводить ток, например, уголок, металлическую полосу, проволоку, пруты, трубки. Чтобы максимально усилить сигнал следует расположить за парными квадратами отражатель, выполненный, например, из фольги.

Если принято решение своими руками провести все работы, то надо подготовить для такой антенны такие комплектующие:

  1. Wi-Fi адаптер. Кусок кабеля (высокочастотного) предназначенного для подключения Wi-Fi. Его сопротивление должно быть в пределах 75Ом или 50Ом.
  2. Проволоку, выполненную из меди, размер сечения которой варьируется в диапазоне от 1,5мм до 3мм. Она хорошо гнется, поэтому будет задействоваться для проводки. Если не удастся найти медную проволоку, можно использовать стальной материал, сечение которого варьируется в диапазоне от 2мм до 5мм.
  3. Листок текстолита (фольгированного), размером 100мм х 120мм. Его можно заменить листком гетинакса, такого же размера.
  4. Штекер.
  5. Сырье для распорок: деревянные планки, фибергласс, дюралевые трубки.
  6. Инструменты (молоток, паяльник, наждачная бумага и т. д.).
  7. Шест для фиксации антенны на стене дома либо на крыше.
  8. Крепежные элементы.

В разрыв активного элемента, расположенный снизу, осуществляется подключение кабеля (коаксикального), волновое сопротивление которого составляет 75ОМ. Разрыв рефлектора представляет собой двухпроводную открытую линию, которая продолжает линию рамки. Между проводами присутствует расстояние 150мм – 200мм, а также скользящая по линии перемычка, предназначенная для регулировки.

Многие специалисты рекомендуют для этих целей применять оснащенные по краям изоляторами дюралевые трубы. В этом случае вертикальные распорки выполняются из цельного сырья, а расположенные горизонтально элементы разделяются посредством изоляционных вставок. Для них можно применить армированный фторопласт, стеклотекстолит и т. д. Главное, выполнить основное условие. Каждая из четырех распорок, расположенных горизонтально, должна состоять из изолированных элементов, равных по размерам.

Надо ли делать расчеты

Если человек самостоятельно решил изготовить антенну двойной квадрат для получения цифрового сигнала, ему нет надобности исчислять длину волны. Специалисты рекомендуют людям, для принятия устройствами максимального количества сигналов, делать конструкции более широкополосными.

В том случае, когда мастер стремится изготовить антенну по всем правилам, он может выполнить расчеты.

Для этого ему потребуются определенные данные:

  1. Узнать размер стороны квадрата удастся таким образом. Определяется волна, на которой осуществляется трансляция сигнала. Этот показатель делится на 4.
  2. Узнать, какое в идеале расстояние должно быть между 2 частями устройства можно таким образом. Внутренние элементы — более короткие, а наружные стороны ромбов – немного длиннее.

Также мастера могут задействовать в процессе изготовления антенн двойной квадрат уже готовые расчеты:

Наименование элементов (мм)Диапазон 10мДиапазон 15мДиапазон 20м
Диагональ (А) рамок3750мм5050мм7600мм
Полная длина (b) двухпроводной линии (регулировочной) рефлектора650мм850мм1300мм
Расстояние (L) между рамками1330мм1800мм2700мм

Антенна двойной квадрат изготовление

После того как мастер узнал, какие размеры антенны двойной квадрат надо использовать, он может приступать к ее изготовлению.

Этот процесс предусматривает несколько этапов:

  1. В первую очередь придется осторожно, с двух сторон зачистить кабель. Тот конец, который будет крепиться к самой конструкции, следует очистить таким образом, чтобы провод выходил из изоляции примерно на 2см. Если оголенный кончик получился большего размера, то излишек следует отрезать.
  2. Фольга, которая будет задействоваться в качестве отражающего экрана, и оплетка должна быть скручена в жгут.
  3. В итоге у мастера получится два проводника, которые необходимо залудить.
  4. Берется второй край кабеля (1см) и к нему припаивается штекер. Те места, в которых будет осуществляться пайка, необходимо обработать посредством растворителя либо спирта. После этого нужно выполнить зачистку надфилем или наждачной бумагой. На подготовленный кабель надевается штекер пластиковой частью, делается пайка.
  5. На следующем этапе придется припаять моножилу к выходу штекера (центральному), а многожильную скрутку к боковому.
  6. Вокруг изоляции обжимается захват. Это делается и при изготовлении антенны тройной квадрат.
  7. Накручивается наконечник, выполненный из пластика. Полости специалисты рекомендуют залить герметиком, не проводящим ток либо клеем.
  8. Быстро собирается конструкция штекера, пока не успела застыть клеящая смесь (ее излишки убираются).
  9. Осуществляется соединение своими руками двух элементов: рамки с кабелем. Ввиду того, что в процессе изготовления антенны не делалась привязка к конкретному каналу, выполнять припаивание кабеля нужно к средней точке рамки. В итоге удастся увеличить широкополосность конструкции, которая станет принимать больше каналов.
  10. Второй подготовленный кончик кабеля необходимо припаять по центру к двум сторонам, которые предварительно были зачищены и залужены.
  11. На данном этапе завершен процесс изготовления конструкции активной рамки, теперь переходим к проверке и установке антенны.

Для этого следует по такому же принципу выявить частоты рассчитать, основные параметры. Для дмв антенны тройной квадрат потребуется больше расходных материалов, так как потребуется создать дополнительную рамку – директор, имеющий меньшие размеры.

Важно! Чтобы правильно выполнить расчет антенны тройной квадрат для цифрового телевидения, можно задействовать онлайн калькулятор. В него необходимо внести такие данные: частоту, тип провода, Мгц. После нажатия на кнопку «результат» программа автоматически проведет расчеты и выведет в специальном окошке цифры.

Испытание антенны двойной квадрат

После того как была создана конструкция антенны ее следует испытать. В обязательном порядке мастер должен выполнить настройку излучателя, благодаря чему удастся смотреть передачи в максимально высоком для таких условий качестве.

При проведении испытаний следует учесть несколько нюансов:

  • Диаграмма направленности конструкции будет косить при отсутствии устройства, обеспечивающего симметрию.
  • Если стороны квадрата возбуждаются синфазно, значит поляризация эл. поля к плоскости конструкции проводится перпендикулярно.
  • Компенсировать реактивную составляющую антенны (после настройки антенны) можно при настройке мостика (симметрирующего), удлиняя или укорачивая этот элемент.
  • Если сопротивление антенны под кабель будет более высоким, то это положительно отразится на коэффициенте усиления. Именно поэтому для конструкции следует задействовать коаксиальный кабель не 50Ом, а 75Ом.
  • Антенну следует помещать в защитный корпус, который предотвратить заливание водой и налипание снега, обледенение. Для этих целей можно задействовать 5л пластиковую баклажку.
  • В процессе испытаний не должно находиться возле антенны второй квадрат ноутбука или ПК с подключениями wi-fi. Как только конструкция будет включена в ТВ оборудование, можно посредством компьютерной техники ловить эти сигналы. Наиболее качественные wi-fi точки будут обнаружены при установке антенны на крыше.
  • Проводится настройка тюнера и проверяется качество видео и звука.

Заключение и особенности антенны двойной квадрат

Такая конструкция имеет направленное действие. Если пользователь будет проворачивать ее на 360 градусов, то сможет поймать разнообразные сигналы. Владельцы загородных домов и дач, которые не используют отражающие экраны, должны знать, что в этом случае качество сигнала снизится минимум на 30%. Его функции может заменить шляпа спутниковой тарелки. На место расположения головки следует прикрепить конструкцию двойной квадрат. Благодаря таким манипуляциям удастся без отражающего экрана максимально усилить цифровые сигналы.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector