Простая схема защиты от обратной полярности без падения напряжения

Содержание

Сообщества › Сделай Сам › Блог › Защита от переполюсовки и короткого замыкания на выходе. Для зарядного устройства. Своими руками.

Друзья всем привет в этой записи я решил рассказать про защиту зарядного устройства. Рассмотрю на мой взгляд две самые простые и популярные схемы.

Метки: sam_электрик, защита от короткого замыкания, защита от переполюсовки, защита зарядного устроиства

Комментарии 57

Привет, в схеме защиты на реле светодиод какого типа стоит?

Самый обычный светодиод. 3мм

А на какое напряжение? Думаю собрать первую схемку, может даже только поставить VD1 иVD2, без индикации будет.

Так они все 2…3 вольта.

В схеме с полевиком, можно убрать шунт если мне не нужна защита от КЗ, а нужна только от переполюсовки?
Или без шунта не будет работать?

Маленькое замечание по релейной схеме защиты. Избыточность (по количеству) диодов трогать не будем.
Если попадётся АКБ с глубокой разрядной( ниже 9V), то реле тупо не сработает, даже при правильном подключении.

По поводу видео, у полевого транзистора НЕ база — затвор.

Да с полевиком та же ситуация получиться (если он конечно не управляется логическим уровнем). Потому что открыть транзистор нужно 10-12 вольт на затворе. При меньших напряжениях будет возрастать сопротивление сток исток и транзистор начнет греться.

VD3 VD4, VD1 тоже не нужен, нигде в машинах я не видел диодов для реле,

я про них и говорил) а параллельно реле по идее можно оставить…

VD3 VD4, VD1 тоже не нужен, нигде в машинах я не видел диодов для реле,

VD1 я так понимаю, защитный диод от бросков тока индуктивности реле. Я видал не мало проблем из за того что не было установлено защитных диодов или RC цепей. Вот VD3 и VD4 ставить со светодиодами, это уже избыточность, зачем диоду диод я не совсем понял. Вот если бы там вместо светодиода стояли лампы или что то полнопроводимое, тогда бы да.
То ли автор рукожоп, то ли стянул схему у рукожопа, чем так же зарукожопил 🙂

У светодиодов есть такой параметр, как предельно допустимое напряжение, видимо для этого и стоят диоды.

И что же они делают?

Возможно, так было реализована защита от пробоя обратным напряжением, хотя более правильно было бы их подключить встречно-параллельно светодиодам. А в том виде, как они сейчас на схеме изображены, боюсь — ничего, просто стоят.

У светодиодов есть такой параметр, как предельно допустимое напряжение, видимо для этого и стоят диоды.

От предельно допустимого напряжения стоят резисторы последовательно со светодиодами. Что не спасёт эти светодиоды от бросков тока…

Резисторы стоят, ограничивающие ток в прямом направлении, от бросков тока защитят, если их взять с запасом по сопротивлению. От пробоя обратным напряжением они никак не спасут, могут лишь впоследствие ограничить ток обратного напряжения.
Когда к светодиоду приложено обратное напряжение, даже через резистор, ток через цепь не течет (при напряжении меньше порогового), а это значит, что на выводах светодиода присутствует полное напряжения питания, так что не надо заблуждаться, если вы используете светодиод в цепи, напряжение где выше предельно допустимого обратного, защищайте светодиод от пробоя обратным напряжением, и не резистором, включенным последовательно.

VD1 я так понимаю, защитный диод от бросков тока индуктивности реле. Я видал не мало проблем из за того что не было установлено защитных диодов или RC цепей. Вот VD3 и VD4 ставить со светодиодами, это уже избыточность, зачем диоду диод я не совсем понял. Вот если бы там вместо светодиода стояли лампы или что то полнопроводимое, тогда бы да.
То ли автор рукожоп, то ли стянул схему у рукожопа, чем так же зарукожопил 🙂

Сто баллов рукожопы все. Видео не смотрим. На плате этих диодов нет, есть только под красным светодиодом и то он там не для него, а для подключения пищалки.

Так перерисуй схему и не нужно каждому объяснять.
Я к примеру зашел с сотика и не буду тратить траффик на видюшки, а схему гляну.

Ок схему перерисую.

Сто баллов рукожопы все. Видео не смотрим. На плате этих диодов нет, есть только под красным светодиодом и то он там не для него, а для подключения пищалки.

Ещё одну звезду рукожопа себе набей. Мы вроде как схему на картинке обсуждали, причём тут видео?

Во заладил рукожоп да рукожоп. Давай еще на личности перейди. Отвлекись, почитай статью “нормальную” успокойся. Если так судить то из любой схемы можно десяток деталей выкинуть.

Ты сначала пишешь спасибо за внимание и за критику, а потом недоволен этой самой критикой, говоришь чтоб мимо проходили. Как ещё то относится к такому, и общаться с таким человеком?
Вот начало твоей записи — “Друзья всем привет в этой записи я решил рассказать про защиту зарядного устройства. Рассмотрю на мой взгляд две самые простые и популярные схемы.” — только где ты что рассказал в записи или рассмотрел я не вижу, а вижу я только ссылку на другой ресурс — видеохостинг с видеороликом. Перепиши статью, опиши конструкции схем, их достоинства и назначение. В конце уже вставь видео, и тогда статья будет полноценна. А так получается просто перепост видеозаписи, насасывание лайков или ещё чего то. Некрасиво это, неприятно и вызывает только раздражение.

Критика нужна адекватная и по сути, это запись, а не статья. Статьи в газетах пишут. Принцип работы, сравнение, демонстрация работы все это здесь есть. И если у вас какие то проблемы с видео, то не надо критиковать людей за это. Правила не запрещают видео ставить, а то что писанину не развел извините не в журнал “радио” пишу.

Вот опять трындишь на тему — “не нравиться иди в другое место”. Так создай сообщество с названием перепост видео с ютуба, и делай свои записи. Стати не только в газету пишут, а так же в журнал, блог и т.д. Критика адекватная, я тебе не только указал что твой пост говно, но и расписал почему, а ты брыкаешься, что это я такой неугодный читатель.

Таких “говно” постов сейчас 80% на драйве. Трудно вам придется, почитать почти нечего.

VD3 VD4, VD1 тоже не нужен, нигде в машинах я не видел диодов для реле,

На транзисторном управлении лучше поставить, да и искру они гасят на управлении(если клавиша).
У меня к примеру релюшки в авто все идут с резисторами. С диодами сложнее, т.к. будет влиять полярность.

А тут конечно это всё лишнее.

а вторая схема вообще жуткое усложнение первой) третья походу на ардуине будет)

да чувак просто набрал контента в инете и слепил видос чтобы бабла подзаработать на просмотрах
а тут обсуждают как будто он сам чо-то делал

Самое простое диод и предохранитель. Защищает и от перегрузки по току и от переполюсовки.

один нюанс… его ж надо менять… и где то взять… потом он перерастает в жирного жука и утрачивает свой статус)

Это что же надо сколько раз перепутать?
А предохранитель можно и восстанавливающийся, но он медленее обычного.

за долгую жизнь зарядника можно мульён раз перепутать)

Зато дёшево, надёжно и работает всегда!
ну а от всяких путаников и любителей “жуков” спасёт только гильотина.

про всегда. я б поостерёгся) не всегда есть предаки с собой. тем более, сейчас китайчатина такая, что шипит, плавится, но не сгорает) да и к примеру в 30 мороз предак менять не комильфо совсем)

Езде есть плюсы и минусы, а первую схему попробуйте запустить на севшей АКБ.

Защита схем от переполюсовки питания с помощью N-канального MOSFET

n-канальный MOSFET + стабилитрон на 7.2. 15V + резистор в пару десятков килоом = БЕЗОПАСНОСТЬ

Задачка-то, вроде, тривиальная. Да и зачем кому-либо вообще может понадобиться защищать какие-бы то ни было электронные изделия от переполюсовки источника питания?

Увы, у коварного случая найдётся тысяча и один способ подсунуть вместо плюса минус на устройство, которое ты много дней собирал и отлаживал, и оно вот только что заработало.

Приведу лишь несколько примеров потенциальных убийц электронных макеток, да и готовых изделий тоже:

  • Универсальные источники питания с их универсальными штеккерами, которые можно подключить как с плюсом на внутреннем контакте, так и с минусом.
  • Маленькие блоки питания (такие коробочки на сетевой вилке) – они ведь все выпускаются с плюсом на центральном контакте, разве нет? НЕТ!
  • Любой тип разъёма для подачи питания без жёсткого механического “ключа”. К примеру удобные и дешёвые компьютерные “джамперы” с шагом 2.54мм. Или зажимы “под винт”.
  • Как вам такой сценарий: позавчера под рукой были только чёрные и синие провода. Сегодня был уверен, что “минус” – это синий провод. Чпок – вот и ошибочка. Сначала-то хотел использовать чёрный и красный.
  • Да просто если уж день на задался – перепутать пару проводов, или воткнуть их наоборот просто потому, что плату держал кверхтормашками.

Всегда найдутся человеки (я знаком как минимум с двумя такими перцами), которые глядя прямо в глаза заявят жёстко и безапелляционно, что уж они то никогда не совершат такой глупости, как переполюсовка источника питания! Бог им судья. Может, после того, как сами соберут и отладят несколько оригинальных конструкций собственной разработки – поумнеют. А пока я спорить не буду. Просто расскажу, что использую сам.

Истории из жизни

Я ещё совсем молоденький был, когда пришлось мне перепаивать 25 корпусов из 27. Хорошо ещё это были старые добрые DIP микросхемы.
С тех самых пор я почти всегда ставлю защитный диодик рядом с разъёмом питания.

Читайте также:  Напряжение на броне и проводе заземления в 5-жильном кабеле

Кстати, тема защиты от неверной полярности питания актуальна не только на этапе макетирования.
Совсем недавно мне довелось стать свидетелем героических усилий, предпринимаемых моим другом по восстановлению гигантского лазерного резака. Причиной поломки был горе-техник, перепутавший провода питания сенсора/стабилизатора вертикального перемещения режущей головки. На удивление сама схемка, похоже, выжила (была-таки защищена диодом в параллель). Зато выгорело всё напрочь после: усилители, какая-то логика, контроль сервоприводов.

Защитный диод последовательно с нагрузкой

Это, пожалуй, самый простой и безопасный вариант защиты нагрузки от переполюсовки источника питания.
Одно только плохо: падение напряжения на диоде. В зависимости от того, какой диод применён, на нём может падать от примерно 0.2В (Шоттки) и до 0.7. 1В – на обычных выпрямительных диодах с p-n переходом. Такие потери могут оказаться неприемлимыми в случае батарейного питания или стабилизированного источника питания. Так же, при относительно большых токах потребления, потери мощности на диоде могут быть весьма нежелательными.

Защитный диод параллельно с нагрузкой

При таком варианте защиты нету никаких потерь в нормальном режиме работы.
К сожалению, в случае переполюсовки источник питания рискует надорваться. А если источник питания окажется слишком силён – выгорит сначала диод, а за ним и вся защищаемая им схема.
В своей практике я иногда использовал такой вариант защиты от переполюсовки, особенно когда был уверен, что источник питания имеет защиту от перегрузки по току. Тем не менее однажды я заработал весьма чёткие отпечатки на обожженых пальцах коснувшись радиатора стабилизатора напряжения, который пытался бороться супротив толстенного диода Шоттки.

p-channel MOSFET – удачное, но дорогое решение

Это относительно простое решение практически лишено недостатков: ничтожное падение напряжения/мощности на проходном устройстве в нормальном режиме работы, и отсутствие тока в случае переполюсовки.
Единственная проблема: где добыть качественные недорогие мощные p-канальные полевые транзисторы с изолированным затвором? Если знаете – буду благодарен за информацию
При прочих равных p-канальный MOSFET по какому-либо параметру всегда будет примерно в три раза хуже своих n-канальных собратьев. Обычно же хуже одновременно и цена, и что-либо на выбор: сопротивление открытого канала, максимальный ток, входная ёмкость и т.п. Объясняют такое явление примерно втрое меньшей подвижностью дырок, нежели электронов.

n-channel MOSFET – наилучшая защита

Раздобыть мощный низковольтный n-канальный КМОП транзистор в наши дни совсем несложно, ими порою можно разжиться даже совсем забесплатно (об этом – позже;). Так что обеспечить пренебрежимо малое падение на открытом канале для любых вообразимых токов нагрузки – пустяк.

N-канальный MOSFET + стабилитрон на 7.2. 15V + резистор в пару десятков килоом = БЕЗОПАСНОСТЬ

Так же, как и в схеме с p-канальным MOSFET, при ошибочном подключении источника – и нагрузка и незадачливый источник вне опасности.

Единственный “недостаток”, который дотошный читатель может углядеть в данной схеме защиты – это то, что защита включена в т.н. “земляной” провод.
Это действительно может быть неудобно, если строится большая система с земляной “звездой”. Но в таком случае надо просто предусматривать эту же защиту в непосредственной близости от подвода питания. Если же и такой вариант не подходит – наверняка найдутся способы такую непростую систему либо обеспечить уникальными разъёмами питания с надёжными механическими ключами, либо развести “постоянку”, или хотя бы “землю” без разъёмов.

Осторожно: статическое электричество!

Мы все много раз были предупреждены о том, что полевые транзисторы боятся статических разрядов. Это правда. Обычно затвор выдерживает 15. 20 Вольт. Немного выше – и необратимое разрушение изолятора неизбежно. При этом бывают случаи, когда полевик вроде ещё работает, но параметры хуже, и прибор может отказать в любой момент.
К счастью (и к великому сожалению) мощные полевые транзисторы обладают большими емкостями затвор – остальной кристалл: от сотен пикофарад, до нескольких нанофарад и больше. Посему разряд человеческого тела часто выдерживают без проблем – ёмкость достаточно велика, чтобы стёкший заряд не вызвал опасного повышения напряжения. Так что при работе с мощными полевиками часто бывает достаточно соблюдать минимальную осторожность в смысле электростатики и всё будет хорошо

Я не одинок

То, что я описываю здесь, без сомнения, хорошо известная практика. Вот только если бы те разработчики военпрома имели привычку публиковать свои схемные решения в блогах.
Вот что мне попалось на просторах Сети:

> > I believe it is pretty well standard practice to use an N-channel
> > MOSFET in the return lead of military power supplies (28V input).
> > Drain to supply negative, source to the negative of the PSU and
> > the gate driven by a protected derivative of the positive supply.

Где добыть MOSFET-ы практически даром

загляните ко мне чуть позже – будет статейка

Примеры применения

Простенький генератор меандра 100 КГц с защитой от переполюсовки питания:

Генераторы пилы и синусоиды 1600 Гц, сидящие на одной плате, тоже защищены:

Вам было интересно? Напишите мне!

Друзья мои, собратья по интересам! Пишу и буду развивать этот блог – идей море и опыта уже накоплено предостаточно – есть чем поделиться. Времени как всегда мало. Что было бы интересно лично Вам?

Спрашивайте, предлагайте: в комментариях, или в личку. Спасибо!

Всего Вам доброго!

PS. Мне будет приятно, если вы поделитесь этой заметкой со своими друзьями в соц-сетях. Для этого достаточно кликнуть на соответствующую иконку:

Защита от обратной полярности: как защитить ваши схемы, используя только диод

Подключение питание с неправильной полярностью – эту ошибку совершить легко. К счастью, защита вашего устройства от обратной полярности также довольно проста.

Защита от обратной полярности: как защитить ваши схемы, используя только диод

Когда вы меняете полярность питания вашего устройства, могут произойти плохие вещи. Обмен местами положительного и отрицательного выводов питания, вероятно, является основным способом «пускания дыма» от новой блестящей печатной платы, и это на самом деле лучший сценарий, чем нанесение какого-то незначительного урона, который приводит к недоумению и непредсказуемым сбоям. Обратная полярность также может возникать после фазы тестирования и разработки. Устройство, как правило, разработано так, чтобы предотвращать неправильное подключение кабеля конечным пользователем, но даже самые лучшие из нас могут иногда вставлять аккумулятор, не глядя на полярность.

Я предпочитаю использовать все доступные средства, чтобы сделать обратную полярность физически невозможной, но суть в том, что устройство никогда не является действительно безопасным, если сама схема не сможет выдержать напряжение питания обратной полярности. В данной статье мы рассмотрим два простых, но очень эффективных способа сделать вашу схему надежной против ошибок изменения полярности питания.

Что такое диодная защита от обратной полярности?

На самом деле вы можете получить защиту от обратной полярности с помощью одного лишь диода. Да, всё, что вам нужно, это один диод. Это действительно работает, но, конечно, более сложное решение может обеспечить лучшую эффективность.

Идея здесь состоит в том, чтобы поставить в линию питания последовательно диод.

Защита от обратной полярности с помощью диода

Если вы не знакомы с этим методом, он может показаться немного странным. Может ли диод изменить полярность приложенного напряжения? Может ли он действительно «изолировать» схему, расположенную ниже, от приложенного напряжения?

Он, конечно, не сможет «отменить» обратную полярность, но он может изолировать остальную часть схемы от этого условия просто потому, что он не будет проводить ток, когда напряжение катода выше напряжения анода. Таким образом, в случае обратной полярности наносящие повреждения обратные токи не смогут протекать, и напряжение на нагрузке не будет таким же, как обратное напряжение источника питания, потому что диод работает подобно разрыву в цепи.

Схема LTspice, показанная выше, позволяет нам исследовать переходное и установившееся поведение схемы защиты на основе диода. Первоначально напряжение составляет 0В, затем оно резко изменяется до –3В. Моя идея здесь заключается в том, чтобы имитировать эффект неправильной установки двух аккумуляторов 1,5В (или одной батареи 3В). Моделирование включает в себя сопротивление нагрузке (соответствующее схеме, которая потребляет около 3 мА) и емкость нагрузки (соответствующая блокировочным конденсаторам у нескольких микросхем).

Результаты моделирования схемы защиты от обратной полярности с помощью диода

Вы можете видеть, что через диод протекает некоторый обратный ток (т.е. от катода к аноду). Переходной ток очень мал, а ток в установившемся состоянии незначителен. Однако ток течет, и, следовательно, диод со стороны катода не совсем «оторван» от цепи питания; вместо этого в цепи нагрузки имеется очень малое обратное напряжение. Однако это не является установившимся состоянием. Если мы продолжим моделирование до 300 мс, мы увидим следующее:

Результаты моделирования схемы защиты от обратной полярности с помощью диода (продолжительность 300 мс)

Так как емкость нагрузки заряжается и становится разрывом в цепи, ток падает до нуля (точнее, до 0,001 фемтоампера, в соответствии с LTspice), и, следовательно, на нагрузке нет никакого обратного напряжения. Вывод здесь заключается в том, что диод не идеален, но, насколько мне известно, его достаточно, потому что я не могу себе представить, что на какую-то реальную схему могут негативно повлиять

100 мс напряжения обратной полярности в несколько микровольт.

Достоинства и недостатки

К текущему моменту достоинства этой схемы должны быть очевидны: она дешева, чрезвычайно проста и эффективна. Однако есть определенные недостатки, которые необходимо учитывать:

    Во время нормальной работы на диоде падает

0,6В. Это может быть значительной частью напряжения питания, а при уменьшении напряжения батареи устройство может перестать работать раньше срока.

  • Любой компонент, который вызывает на себе падение напряжения и ток, протекающий через него, потребляет энергию. Если эта рассеиваемая энергия исходит от батареи, диод сокращает время автономной работы. Это не может быть приемлемым компромиссом в устройствах, которые имеют очень низкий риск возникновения обратной полярности.
  • Защита от обратной полярности с помощью диода Шоттки

    Простым способом смягчения обоих указанных недостатков является использование диода Шоттки вместо обычного диода. Этот подход уменьшает потери напряжения и рассеивание мощности. Я не уверен, как могут вести себя маломощные диоды Шоттки, но в некоторых случаях прямое напряжение может быть ниже 300 мВ.

    Вот новая схема моделирования:

    Защита от обратной полярности с помощью диода Шоттки

    Следующие спецификации дают нам пример характеристик диода BAT54 при прямом напряжении:

    Характеристики диода BAT54 при прямом напряжении

    Ниже показан график переходного и установившегося отклика схемы защиты от обратной полярности на основе диода Шоттки.

    Результаты моделирования схемы защиты от обратной полярности с помощью диода Шоттки

    Вы можете видеть, что обратный ток и обратное напряжение на нагрузке намного больше, чем те, что мы наблюдали с обычным диодом. Этот более высокий обратный ток утечки является известным недостатком диодов Шоттки, хотя в этом конкретном применении обратный ток по-прежнему намного ниже, чем что-либо, что может вызывать серьезную озабоченность. Поэтому, когда дело доходит до защиты от обратной полярности, диоды Шоттки определенно предпочтительны.

    Заключение

    Мы видели, что один диод представляет собой удивительно эффективный способ включения в схему электропитания устройства защиты от обратной полярности. Диоды Шоттки имеют более низкое прямое напряжение и, следовательно, обычно лучше подходят, чем обычные диоды. Те, кто имел опыт с этими схемами, рекомендуют 1N4001 (если вы по какой-либо причине хотите использовать обычный диод) или MBRA130 (это диод Шоттки).

    Рекомендации при проектировании схем защиты цепей питания 12 и 24 В для автомобильных приложений

    С помощью семейства интегральных схем MAX16126/7/8/9 компания Maxim Integrated обеспечивает защиту бортовой автомобильной электроники от бросков напряжения в диапазоне от -36 до 90 В без применения дополнительных внешних компонентов. В случае же применения таковых, защита простирается вплоть до 200 В, что авторы статьи доказали на практическом примере, собрав схему защиты на базе микросхемы MAX16127TC+.

    Автомобильной электронике приходится работать при воздействии сильных импульсных помех. В современных автомобилях установлено большое количество электронного оборудования, для работы которого необходимо защищать цепи питания от бросков напряжения, электростатических разрядов и включения при обратной полярности аккумулятора. Согласно ГОСТ 28751-90 электронное устройство, работающее в автомобильной сети, должно выдерживать воздействие помех в диапазоне от минус 1100 В до плюс 300 В (для бортовой сети). Для решения этих проблем существует несколько традиционных вариантов защиты:

    • установка дискретных компонентов (варисторы, защитные TVS-диоды, предохранители, индуктивные и емкостные фильтры);
    • использование электронных компонентов со встроенной защитой от перегрузок по входу и выходу;
    • применение специализированных микросхем с активной защитой.
    Читайте также:  Как штробить стены под проводку болгаркой?

    Каждый из этих способов имеет преимущества и недостатки. Преимущество защиты на дискретных компонентах – низкая стоимость. К недостаткам этого варианта можно отнести зависимость напряжения ограничения от мощности помехи и большое время срабатывания у варистора и предохранителя. Последовательное включение диода на входе защищаемой схемы позволяет реализовать защиту от включения с обратной полярностью, но падение напряжения на диоде уменьшает диапазон допустимых входных напряжений. Кроме того, на последовательно включенном диоде теряется рассеиваемая мощность, так как весь ток протекает через этот диод. Плавкие предохранители необходимо заменять после перегорания. В большинстве случаев для этого требуется ехать на станцию технического обслуживания.

    Использование микросхем со встроенной защитой ограничено их выбором и ценой. К тому же, такие микросхемы не справляются с мощными высоковольтными помехами.

    Специализированные микросхемы для активной защиты от перенапряжений лишены многих недостатков схем на дискретных электронных компонентах. Основная идея специализированных микросхем защиты – замена дискретных компонентов мощными высоковольтными транзисторами, которые управляются интеллектуальными схемами. Это позволяет расширить функциональность схем защиты при высокой точности параметров ограничения.

    Основные положения ГОСТ 28751-90

    Электронные устройства, подключаемые к бортовым сетям автомобилей с напряжениями питания 12 или 24 В, должны обеспечивать электромагнитную совместимость и помехоустойчивость, удовлетворяя требованиям межгосударственного стандарта ГОСТ 28751-90. В этом документе описаны требования и методы испытаний для автомобильного оборудования. По устойчивости к воздействиям импульсных помех электронные приборы, устанавливаемые в автомобилях, делятся на функциональные классы, описание которых взято из упомянутого выше ГОСТа и приведено в таблице 1.

    Таблица 1. Функциональные классы приборов по устойчивости к воздействию импульсных помех по цепям питания

    КлассОписание
    AВсе функции изделий выполняются во время и после воздействия испытательных импульсов
    BВсе функции изделий выполняются во время и после воздействия испытательных импульсов, однако значения одного или нескольких параметров могут выходить за пределы допусков. После воздействия значения всех параметров восстанавливаются
    CОдна или несколько функций изделий не выполняются во время воздействия испытательных импульсов, однако после воздействия работоспособность изделия восстанавливается
    DОдна или несколько функций изделий не выполняются во время воздействия испытательных импульсов. После воздействия работоспособность изделия восстанавливается простой управляющей операцией
    EОдна или несколько функций изделий не выполняются во время воздействия испытательных импульсов. После окончания воздействия работоспособность изделия не восстанавливается без проведения ремонта

    Для конкретного электронного прибора, подключаемого к цепям питания автомобилей с напряжениями 12 или 24 В, должна быть обеспечена его работоспособность в соответствии с одним или несколькими классами, приведенными в таблице 1. Применение специализированных микросхем защиты с дополнением их высоковольтными MOSFET транзисторами позволяет обеспечить защиту от мощных импульсов помех, удовлетворяя условиям сразу нескольких классов из таблицы 1. Для проведения измерений на устойчивость к воздействию помех на вход исследуемой схемы подаются тестовые импульсы с конкретными параметрами.

    Параметры тестовых импульсов также приводятся в ГОСТ 28751-90. Наиболее опасный и сложный из этих тестовых импульсов имеет номер 5. Его параметры для разных цепей напряжений питания бортовой сети автомобиля приведены на рисунке 1.

    Рис. 1. Параметры тестового импульса №5 для бортовых сетей 12 и 24 В

    Этот импульс является самым жестким при проведении испытаний на соответствие, т.к. содержит в себе наибольшую энергию. Подача этого импульса при испытаниях, ввиду его сложности, даже не требует соответствия классу А, то есть, при подаче импульса 5 устройство не обязано выполнять все функции во время и после подачи импульса.

    Семейство специализированных интегральных схем защиты MAX16126/7/8/9

    Для защиты электронных устройств, предназначенных для работы в автомобильных сетях питания, компания Maxim Integrated выпускает семейство интегральных схем MAX16126/7/8/9 (таблица 2). Это семейство позволяет реализовать схему защиты в широком диапазоне напряжений. Сама микросхема защиты MAX16126/16127 рассчитана для работы в диапазоне -36…90 В без применения дополнительных внешних схем. Однако для расширения диапазона работы производитель рекомендует использование внешнего параметрического стабилизатора [2], что позволяет существенно расширить диапазон рабочих напряжений. При этом рабочий диапазон будет ограничен предельными характеристиками параметрического стабилизатора и внешних транзисторов.

    Таблица 2. Микросхемы серии MAX16126/7/8/9 для защиты автомобильной электроники

    НаименованиеРежим защиты от перенапряженийДопустимые напряжения помех,
    (без дополнительных внешних схем) В
    Корпус
    MAX16126TCAВыключение с автозапуском-36…90 B12TQFN-EP 3 х 3 мм
    MAX16126TCBВыключение после одного перезапуска
    MAX16126TCCВыключение после трех перезапусков
    MAX16126TCDВыключение
    MAX16127TCОграничение
    MAX16128UAxxxxВыключение (с автозапуском; после одного перезапуска или после трех перезапусков)8 uMAX
    MAX16129UAxxxxОграничение

    Испытание схемы защиты на базе MAX16127 при подаче импульса номер 5

    Амплитуда помехи при напряжении аккумулятора 24 В может достигать 200 В при длительности импульса до 350 мс. Именно параметры этого самого «страшного» импульса были использованы при тестировании защитных микросхем серии MAX16126/7/8/9 с дополнительными высоковольтными транзисторами. Для проведения испытаний на базе MAX16127TC+ была собрана схема защиты с допустимым рабочим диапазоном до +400 В (рисунок 2). В качестве ключей были выбраны транзисторы компании STMicroelectronics STP5N52K3, параметрический стабилизатор был выполнен на базе стабилитрона CMZ5946B компании ON Semiconductor. Настройка порога срабатывания от перенапряжения была произведена на уровень 32 В при помощи внешних резисторов R3 и R4 согласно технической документации.

    Рис. 2. MAX16127TC с высоковольтными MOSFET-транзисторами

    Транзистор Т1 используется для защиты при появлении отрицательного напряжения, например, при неправильном включении устройства в цепь («переполюсовка»). В применениях, где необходимы миниатюрные решения и не требуется защита от отрицательных импульсов, транзистор Т1 может не устанавливаться. Транзистор Т2 служит для реализации защиты при появлении повышенного напряжения. При появлении на входе схемы защиты повышенного напряжения, превышающего заданный порог срабатывания (Over Voltage threshold), MAX16127 закрывает транзистор Т2, тем самым препятствуя попаданию повышенного напряжения на выход схемы.

    Для макетирования была выбрана микросхема MAX16127TC+, так как в этом случае используется режим ограничения помехи, при котором выходное напряжение практически не изменяется, и обеспечивается работоспособность питаемого прибора без нарушения его функциональности.

    Рис. 3. Реакция схемы ограничения на пиковый входной импульс в отсутствие нагрузки

    На рисунке 3 показана реакция схемы ограничения на входной импульс с пиковым значением 182 В при отсутствии нагрузки (желтая осциллограмма). Полное напряжение, поступающее на вход схемы ограничения, составляет (24 + 182 = 206) В, где 24 В – это напряжение аккумулятора. Ограниченное напряжение на выходе в этом режиме измерений не превышает (24 + 6 = 32) В, то есть при амплитуде импульса на входе 182 В, выходное напряжение увеличилось на 6 В.

    Рис. 4. Нагрузка 100 Ом, ток 300 мА, выходное напряжение 32 В

    На рисунке 4 изображена осциллограмма при нагрузке 100 Ом. Таким образом, выходное напряжение схемы защиты составило 32 В, а ток – 300 мА, при этой степень подавления входной помехи практически не изменяется. Это говорит о том, что при изменении тока нагрузки в широком диапазоне от нуля до 300 мА режим ограничения помехи практически не меняется, что является большим преимуществом активных схем ограничения по сравнению с решениями на пассивных компонентах.

    Рис. 5. Реакция на фронт (скачок)

    На рисунке 5 показан фронт ограничения при нарастании входного напряжения. При входном напряжении до 32 В уровень напряжения передается на выход без изменения. При достижении напряжения на входе около 32 В (этот порог срабатывания можно при необходимости изменить) происходит ограничение выходного напряжения при дальнейшем росте входного напряжения. Обратите внимание, что масштаб по оси времени составляет 2 мс на клетку (масштаб времени на предыдущих осциллограммах был 40 мс).

    При подаче импульсов с разной нагрузкой проводилось измерение температуры транзисторных ключей. Ввиду того, что ограничение производится в ключевом режиме, повышение температуры во время ограничения зафиксировано не было. То есть использование ограничивающей микросхемы MAX16127 не предъявляет специальных требований к рассеиваемой мощности транзисторных ключей, дополнительных теплоотводящих конструкций (радиаторов) и т.д. Также стоит отметить, что транзисторы и стабилитроны были выбраны, исходя из их наличия. При дополнительных требованиях к размерам схемы защиты разработчик может выбирать транзисторы в более миниатюрных корпусах.

    Использование версии микросхемы с функцией ограничения (MAX16127) позволяет не просто защитить электронное устройство при появлении помехи или намеренном повышении напряжения питания на линии, а дает возможность сохранять работоспособность устройства. То есть в случае намеренных попыток выведения из строя по линиям питания, устройство может вести лог этого события или передавать сигнал тревоги, например по одному из беспроводных каналов (например, GSM). Таким образом, использование семейства MAX16126/16127 позволяет реализовать устройство, превышающее максимальные степени жесткости по ГОСТ 28751-90.

    Тема: Защита от неправильной полярности ИП

    Опции темы

    Защита от неправильной полярности ИП

    При питании аппаратуры от внешнего источника постоянного тока – батарей, сетевого адаптора и т.д. очень желательно защитить устройство от неправильной полярности при подключении внешнего источника. Обычный способ – это включить диод последовательно со входом питания. При этом неизбежно дополнительно падение напряжения на диоде – от 0,3-0,4 В на Шоттки до 0,7-0,9 В на обычном диоде, заметное и нелинейное динамическое сопротивление диода прибавляется к выходному сопротивлению источника и при больших токах потребления на диоде рассеивается заметная мощность. Я натолкнулся на простой способ защиты, не имеющий этих недостатков и позже нашёл эту схему в одном из описаний от TI. Полевик надо выбирать с напряжением отсечки заметно меньше номинального напряжения питания, подходящими максимальными напряжениями и минимальным сопротивлением канала. Для напряжений 5-12 Вольт и токов до 2 Ампер можно применить транзисторы типа FDN304P от Fairchild или аналогичные, разумеется, можно найти подходящие транзисторы вплоть до 50-100А , а при включении дополнительно резистора и стабилитрона для защиты затвора эта схема может работать и при значительных входных напряжениях.

    Думаю, что такое решение может многим пригодиться.

    P.S. – 1 Ом резистор, разумеется, имитирует нагрузку

    Re: Защита от неправильной полярности ИП

    Алексей, а не проще мощный диод параллельно разъему источника питания? И пусть у его защиты голова болит!
    На худой конец дополнить предохранителем.

    А по приведенной схеме: я делал нечто подобное, но еще с ограничителем максимального тока. Оччень помогает при питании переносной аппаратуры в мороз от свинцового аккумулятора.

    Re: Защита от неправильной полярности ИП

    Проще, но не лучше, особенно если источник может дать большой ток. Не надо надеяться на других, если можно предохраниться самому .

    В дополнение: для 5-и вольтовой аппаратуры можно ещё поставить TPS2400 от TI + N-канальный полевик, и защитить от превышения напряжения тоже.

    Re: Защита от неправильной полярности ИП

    Для низковольтных цепей (3. 5 В) также подходит “дуракоустойчивая” микросхема MAX4684 – эквивалент диодного моста на полевиках.
    Только жаль, что у неё макс. вх. напряжение всего 5,5 В, а то можно было бы простой синхронный выпрямитель сделать.

    Re: Защита от неправильной полярности ИП

    Alex Nikitin, Возьму на заметку, просто и сердито

    Re: Защита от неправильной полярности ИП

    MAX4684 – это просто переключатель, каких много, при чём тут эквивалент “диодного моста” ? Она не потерпит никаких перегрузок по напряжению или обратной полярности.

    Re: Защита от неправильной полярности ИП

    Datasheet, figure 1.

    А полная схема защиты от переполюсовки на этой микросхеме – в Радиохобби 4/2004 с.25 (Электор 7/8-2004 p.110). Добавлен конденсатор и два проводника.

    Re: Защита от неправильной полярности ИП

    Читать надо внимательно . Диоды, которые там показаны, это обычные внутренние защитные диоды КМОП логики . И “защита от перенапряжения” там имеется в виду самого чипа по входу – без диода в питании и при превышении на аналоговом входе ключа напряжения питания на 0,5 В защитный диод начнёт проводить и может просто сгореть, если ток через него превысит 20 мА. Защищать там приходится саму микросхему . То же самое случится и с любым другим КМОП переключателем. . Не знаю, что там могли опубликовать в РадиоХобби, но пока не увижу схему, буду сильно сомневаться.

    Читайте также:  Как закрепить проводку в штробе?

    P.S. – схему нашёл, и она не “защищает” от обратной полярности, а просто подключает батарейку в нужной полярности – там можно использовать не обязательно эту микросхему, а любой другой ключ с подходящими параметрами – для 9 В и малых токов пойдет даже что-нибудь вроде 4052. Вот ссылка:

    По печатной плате всё видно. .

    P.P.S. – строго говоря, Maxim настоятельно не рекомендует такой режим работы, какой применён в схеме из “Elector Electronics” , требуя подачи питания ДО подачи сигнала на аналоговые входы, поскольку (хотя и маловероятно ) при этом возможна перегрузка защитных диодов и, теоретически, триггерный эффект в микросхеме.

    Последний раз редактировалось Alex Nikitin; 09.03.2005 в 20:06 .

    Re: Защита от неправильной полярности ИП

    Re: Защита от неправильной полярности ИП

    Я обычно ставлю последовательно самовосстанавливающий предохранитель. И паралельно нагрузке мощный диод обратной полярности.

    Re: Защита от неправильной полярности ИП

    Как удачно я сегодня с утра зашел на ветку

    У меня в USB-зарядном устройстве на диоде Шотки была сделана Reverse Blocking Protection, чтобы компьютер от аккумулятора не запитывать . И падение на нем большое и обратные токи приличные.
    Только начал думать, чем бы этот диод заменить, как вот она идея на блюдечке
    Смакетировал, включил все отлично пашет, спасибо!

    P.S. Кстати, бросилось в глаза, что обратная ветвь ВАХ полевика очень уж на характеристику лампового триода смахивает. Масштаб, правда, другой и диод мешается. но ведь бывают приборы и без диодов.

    Re: Защита от неправильной полярности ИП

    Может быть покажется мелочью, но на вход предложенного устройства защиты желательно поставить низкоиндуктивный керамический конденсатор. Это обеспечит неплохую защиту от статики.

    Re: Защита от неправильной полярности ИП

    Хорошая идея – я, правда, в любом случае ставлю подавитель импульсных перенапряжений – типа мощного двунаправленного стабилитрона (не знаю подходящего русского термина) – он, разумеется, и от статики защищает.

    Re: Защита от неправильной полярности ИП

    Хорошая идея – я, правда, в любом случае ставлю подавитель импульсных перенапряжений – типа мощного двунаправленного стабилитрона (не знаю подходящего русского термина) – он, разумеется, и от статики защищает.

    Транзорб, видимо? Это дороже.
    Я экспериментировал с многослойной керамикой – 100-вольтовый X7R без проблем выдерживает длинные импульсы где-то до киловольта. Разряд статики от человека (типичная модель) – давится совсем легко, при номиналах 0.01-0.1мкф и грамотном размещении.

    Re: Защита от неправильной полярности ИП

    защитный диод, их MOTOROLA много выпускает. Но варистор мощнее. Это уже к EPCOS.

    Re: Защита от неправильной полярности ИП

    При питании аппаратуры от внешнего источника постоянного тока – батарей, сетевого адаптора и т.д. очень желательно защитить устройство от неправильной полярности при подключении внешнего источника. Обычный способ – это включить диод последовательно со входом питания. При этом неизбежно дополнительно падение напряжения на диоде – от 0,3-0,4 В на Шоттки до 0,7-0,9 В на обычном диоде, заметное и нелинейное динамическое сопротивление диода прибавляется к выходному сопротивлению источника и при больших токах потребления на диоде рассеивается заметная мощность. Я натолкнулся на простой способ защиты, не имеющий этих недостатков и позже нашёл эту схему в одном из описаний от TI. Полевик надо выбирать с напряжением отсечки заметно меньше номинального напряжения питания, подходящими максимальными напряжениями и минимальным сопротивлением канала. Для напряжений 5-12 Вольт и токов до 2 Ампер можно применить транзисторы типа FDN304P от Fairchild или аналогичные, разумеется, можно найти подходящие транзисторы вплоть до 50-100А , а при включении дополнительно резистора и стабилитрона для защиты затвора эта схема может работать и при значительных входных напряжениях.

    Думаю, что такое решение может многим пригодиться.

    P.S. – 1 Ом резистор, разумеется, имитирует нагрузку

    Помогите малограмотному кто нибудь мог бы схему на FDN304P
    с резистором и с стабилитроном и с защитным диод нарисовать спасибо.

    –>Радиоклон –>

    Схема 100% рабочая.

    После того как один знакомый сжег своё зарядное устройство из-за неправильно подключённого аккумулятора, мне предстояло собрать схему защиты от подобных косяков. В интернете нашлось много разнообразных схем, но остановился я на этой:

    Источником этой схемы является сайт РадиоКот. После сборки схема заработала без нареканий.

    Скажу сразу, что эта схема защищает от КЗ и от переполюсовки аккумулятора. При нормальном режиме, напряжение через светодиод и резистор R4 отпирает Т1 и всё напряжение с входа поступает на выход. При коротком замыкании или переполюсовке, ток импульсно резко возрастает. Падение напряжения на переходе полевика и на шунте резко увеличивается, что приводит к открытию Т2, который в свою очередь шунтирует затвор и исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.

    Почитав разные форумы и комментарии, решил попробовать немного доработать эту схему. В разных публикациях рекомендуют разные доработки, но в основном вот так:

    Итак, рекомендуют добавить стабилитрон ZD1, резистор R5 и конденсатор C2.

    Стабилитрон рекомендуется установить для защиты затвора от превышения максимально допустимого напряжения.

    Резистор рекомендуется установить для лучшей защиты полевого транзистора, так как в таком виде транзистор будет всегда закрыт и будет открываться только при наличии положительного напряжения на плюсовой клемме.

    Конденсатор рекомендуется установить для защиты схемы от ложного срабатывания.

    По результатам моего “шаманства” над схемой могу сказать следующее:

    1.Стабилитрон действительно нужен, особенно если данная защита будет использоваться в трансформаторных ЗУ или БП. Например, максимальное напряжение Вашего ЗУ 18 В, а максимальное напряжение затвора 20 В. Казалось бы все ОК!, но это не так. Так как в трансформаторах есть такое явление как самоиндукция, то из-за неё в момент отключения трансформатора от сети, на вторичных обмотках будет скачок напряжения, существенно превышающий действующее напряжение. Именно этот скачок может пробить Ваш полевик. Поэтому стабилитрон надо подобрать на несколько вольт меньше чем максимальное напряжение затвора используемого Вами полевого транзистора.

    2.Резистор 5, как было сказано выше, держит полевика закрытым при отсутствии положительного напряжения на плюсовой клемме. Но если установить этот резистор, то светодиод всегда будет немного светится, а при срабатывании защиты засветится ярко. От сопротивления этого резистора будет зависеть яркость постоянного свечения светодиода.

    3.Конденсатор С2 рекомендовали установить для того чтобы схема не срабатывала когда не надо. В моём случае всё получилось наоборот. После установки этого конденсатора, схема начала вести себя неадекватно: светодиод подсвечивался (значит транзистор Т2 приоткрывался), полевик начинал сильно греется (так как Т2 приоткрывался то Т1 призакрывался что вызывало увеличение сопротивления перехода).

    После всех этих проделок, от R5 и С2 я отказался. Оставил только стабилитрон.

    И так пройдёмся по некоторым деталям.

    R1 – он же шунт. От сопротивления этого резистора зависит ток срабатывания защиты. Я использовал 10 параллельно соединённых резисторов 0,1 Ом 1 Вт. В итоге получился резистор общим сопротивлением 0,01 Ом и мощностью 10 Вт. Находил информацию, что при сопротивлении 0,1 Ом защита сработает на 4-х Амперах, при 0,05 Ом ток срабатывания – 7..8 А. Но этого сам не проверял. Можно также использовать готовый шунт от старого тестера.

    Т1 – полевой транзистор. Его параметры зависят от ваших потребностей. Выбирать надо с запасом и по току, и по напряжению. Например, мне нужна была защита для использования в ЗУ с максимальным напряжением 22В и током 10 А. Выбран был транзистор STP30N05(30А, 50В, 0.045 Ω). После неких манипуляций он был удачно спален (температурный пробой). На замену пришел RFP70N06 (70А,60В, 0.014Ω). Можно применить любой из серии IRFZ44,46,48 или им подобные.

    Максимальное напряжение С-И Вольт

    Максимальный ток С-И

    Сопротивление открытого канала

    Также не забываем обращать внимание на максимальное напряжение затвора, в даташите оно обозначается так V GS Gate-to-Source Voltage.

    При срабатывании защиты, полевой транзистор не нагревается. Но в нормальном режиме, через транзистор проходит не малый ток (в моем случае до 10 А), который и нагревает транзистора. По результатам испытаний оказалось что при прохождении тока до 4А транзистор без радиатора был еле тёплый. При прохождении тока больше 4А начинался нагрев полевика (). Даже если нагрев был такой что пальцами можно было удержатся, то через 3 часа зарядки аккумулятора током 6А транзистор нагревался очень сильно. Вывод однозначный – радиатор необходим (не большой, но надо).

    Стабилитрон. С ним мы уже разобрались чуть выше. В моём случае максимальное напряжение затвора транзистора составляло 20 В. Стабилитрон я установил на 18 В.

    Транзистор Т2. Не критичен и может быть установлен любой подходящий по параметрам. Например: BC 174, BC 182, BC 190, BC 546, 2SD767 и т. д.

    Резистор R4. Встречал описание, в котором говорится, что если установить R4 – подстроечный номиналом 10кОм, то можно в узких пределах регулировать ток срабатывания защиты. Не знаю как там у них, но мне точная регулировка не была нужна. Но все равно решил попробовать. И зачем спрашивал я себя после этого. Как регулируется ток срабатывания я не увидел, но увидел, как красиво вылетает полевой транзистор, если установить сопротивление на R4 меньше 1кОм (случайно отвертка соскользнула). Очень не советую ставить этот резистор меньше 1кОм.

    Диод D1. Также не критичен и может быть установлен практически любой. Я установил 1N4148. Встречал форумы, где говорят, что не видят смысла в установке этого диода, но я его не исключал из схемы. Я себе объясняю применение этого диода так: При подаче входного напряжения, на затворе Т1 присутствует положительное напряжение, которое накапливается на емкости затвора. Из-за этой ёмкости, даже после отключения питания, транзистор остается открытым некоторое время. Время, которое транзистор остается открытым зависит от емкости его затвора, чем больше ёмкость – тем дольше он открыт. Допустим, диод D1 отсутствует. Мы к включенному ЗУ подключаем аккумулятор со случайно перепутанной полярностью. Если по какой-то причине транзистор Т2 не откроется, то будет пшик, так как на момент подключения, транзистор Т1 останется открытым из-за накопленного положительного напряжения на затворе. А вот если б диод присутствовал, то напряжение с затвора через диод ушло б на минусовую клемму аккумулятора.

    После сборки, готовую защиту хотел уже устанавливать в корпус ЗУ, но вдруг подумал: А что если защита сработает тогда, когда никого рядом не будет, или кто-то будет, но так что ЗУ не попадет в поле зрения и не увидит светящийся светодиод. Решение – надо установить бузер. Бузер был применён на 12В 8мА. Изначально установил его параллельно светодиоду, но мне это не совсем понравилось, и я чуточку добавил деталей. Если защиту планируется вами применять в регулируемом БП или ЗУ с выходным напряжением от нуля, то бузер лучше установить на 5В. При этом последовательно с бузером необходимо подключить резистор, сопротивление которого надо будет подобрать.

    После всего этого плата с защитой отправилась в ЗУ, где и до сих пор живёт-поживает. В результате, схема получилась вот такая:

    И на конец несколько фото:

    Срабатывание при КЗ.

    Срабатывание при переполюсовке.

    Плата в корпусе ЗУ.

    Плата в корпусе ЗУ. Ближе.

    В архиве есть схема, эта статья и печатка. Скачать

    Напоследок хотелось бы сказать что много кто пишет что эта схема не работает, работает неправильно или ещё что-то. У меня заработала и работает вполне нормально.

    Рейтинг
    ( Пока оценок нет )
    Загрузка ...
    Adblock
    detector