Управление двумя шаговыми двигателями по

Содержание

Электроника для всех

Блог о электронике

Управление шаговым двигателем

Первая модификация силового блока. L293 вытащена.
Вид снизу

Шаговый двигатель это, как понятно из его названия, двигатель который вращается дискретными перемещениями . Достигается это за счет хитрой формы ротора и двух (реже четырех) обмоток. В результате чего, путем чередования направления напряжения в обмотках можно добиться того, что ротор будет по очереди занимать фиксированные значения.
В среднем, у шагового двигателя на один оборот вала, приходится около ста шагов. Но это сильно зависит от модели двигателя, а также от его конструкции. Кроме того, существуют полушаговый и микрошаговый режим , когда на обмотки двигателя подают ШИМованное напряжение, заставляющее ротор встать между шагами в равновесном состоянии, которое поддерживается разным уровнем напряжения на обмотках. Эти ухищрения резко улучшают точность, скорость и бесшумность работы, но снижается момент и сильно увеличивается сложность управляющей программы — надо ведь расчитывать напряжения для каждого шага.

Один из недостатков шаговиков, по крайней мере для меня, это довольно большой ток. Так как на обмотки напруга подается все время, а такого явления как противоЭДС в нем, в отличии от коллекторных двигателей, не наблюдается, то, по сути дела, мы нагружаемся на активное сопротивление обмоток, а оно невелико. Так что будь готов к тому, что придется городить мощный драйвер на MOSFET транзисторах или затариваться спец микросхемами.

Типы шаговых двигателей
Если не углубляться во внутреннюю конструкцию, число шагов и прочие тонкости, то с пользовательской точки зрения существует три типа:

  • Биполярный — имеет четыре выхода, содержит в себе две обмотки.
  • Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины.
  • Четырехобмоточный — имеет четыре независимые обмотки. По сути дела представляет собой тот же униполярник, только обмотки его разделены. Вживую не встречал, только в книжках.

Униполярный отличается от биполярного только тем, что ему нужна куда более простая схема управления, а еще у него значительно слабее момент. Так как работает он только половинами обмоток. НО! Если оторвать нафиг средний вывод униполярника, то мы получим обычный биполярный . Определить какой из выводов средний не сложно, достаточно прозвонить сопротивление тестером. От среднего до крайних сопротивление будет равно ровно половине сопротивления между крайних выводов. Так что если тебе достался униполярник, а схема подключения для биполярного, то не парься и отрывай средний провод.

Где взять шаговый двигатель.
Вообще шаговики встречаются много где. Самое хлебное место — пятидюймовые дисководы и старые матричные принтеры . Еще ими можно поживиться в древних винчестерах на 40Мб, если, конечно, рука поднимется покалечить такой антиквариат.
А вот в трехдюймовых флопарях нас ждет облом — дело в том, что там шаговик весьма ущербной конструкции — у него только один задний подшипник, а передним концом вал упирается в подшипник закрепленный на раме дисковода. Так что юзать его можно только в родном креплении. Либо городить высокоточную крепежную конструкцию. Впрочем, тебе может повезет и ты найдешь нетипичный флопарь с полноценным движком.

Схема управления шаговым двигателем
Я разжился контроллерами шаговиков L297 и мощным сдвоенным мостом L298N.

Схема включения L298N+L297 до смешного проста — надо тупо соединить их вместе. Они настолько созданы друг для друга, что в даташите на L298N идет прямой отсыл к L297 , а в доке на L297 на L298N .


Осталось только подключить микроконтроллер.

  • На вход CW/CCW подаем направление вращения — 0 в одну сторону, 1 — в другую.
  • на вход CLOCK — импульсы. Один импульс — один шаг.
  • вход HALF/FULL задает режим работы — полный шаг/полушаг
  • RESET сбрасывает драйвер в дефолтное состояние ABCD=0101.
  • CONTROL определяет каким образом задается ШИМ, если он в нуле, то ШИМ образуется посредством выходов разрешения INH1 и INH2 , а если 1 то через выходы на драйвер ABCD. Это может пригодится, если вместо L298 у которой есть куда подключать входы разрешения INH1/INH2 будет либо самодельный мост на транзисторах, либо какая-либо другая микросхема.
  • На вход Vref надо подать напряжение с потенциометра, которое будет определять максимальную перегрузочную способность. Подашь 5 вольт — будер работать на пределе, а в случае перегрузки сгорит L298 , подашь меньше — при предельном токе просто заглохнет. Я вначале тупо загнал туда питание, но потом передумал и поставил подстроечный резистор — защита все же полезная вещь, плохо будет если драйвер L298 сгорит.
    Если же на защиту пофигу, то можешь заодно и резисторы, висящие на выходе sense выкинуть нафиг. Это токовые шунты, с них L297 узнает какой ток течет через драйвер L298 и решает сдохнет он и пора отрубать или еще протянет. Там нужны резисторы помощней, учитывая что ток через драйвер может достигать 4А, то при рекомендуемом сопротивлении в 0.5 Ом, будет падение напряжения порядка 2 вольт, а значит выделяемая моща будет около 4*2=8 Вт — для резистора огого! Я поставил двухваттные, но у меня и шаговик был мелкий, не способный схавать 4 ампера.

Правда на будущее, когда я буду делать роботу шаговый привод, я возьму не связку L297+L293 , а микруху L6208 которая может и чуть слабей по току, но зато два в одном! Сразу подключай двигатель и работай. Если же их покупать, то на L6208 получается даже чуть дешевле.

201 thoughts on “Управление шаговым двигателем”

А можешь посоветовать шаговик из тех, которые сейчас можно купить?
Я не знаю как у всех, но я д аже двухдюймовые флопики повыкидывал лет пять назад, а 5-ти дюймовых и в помине не было.

По продаваемым не в курсе. В нашей деревне их в продаже нету, а что там в Московии я даже не знаю.

Оппа, теперь самое время разбираться, что за шаговики у меня имеются по результатам годового потрошения CD-DVD ROM’ов. 🙂

А в сидюках/дивдюках вроде бы стоят обычные коллекторники+синхронный на шпиндель. Хотя могут быть и шаговики, но я не встречал ни разу.

Шаговики во многих CD/DVD приводах стоят — для таскания каретки с лазером (у меня минимум 3 таких экземпляра валяются). Но конструкция двигателя — как в трехдюймовых дисководах, для практического применения неудачная.

ну когда я расотрошил сиди ром там был безколлекторник + еще какойто на шпиндель
для безколлекторника я думаю применение в моделизме
http://forum.rcdesign.ru/index.php?showtopic=12183&st=560
может пригодится кому

http://forum.rcdesign.ru/index.php?showtopic=12183&st=560
может чем пригодится там модельный регултор хода
может управлять сдромным безколлекторником

работал с шаговыми движками на своей фирме.
ещё с нашими совеццкими и руссийскими.

сколько раз коротыш верещал на источниках — не счесть ) единственное оправдание — я про них ещё тогда ничего не знал и доков не имел. работал методом тыка…

всё хорошо, но нету обратной связи.

зы! от постоянных замыканий избавлялись частыми переключениями обмоток, когда надо было застопорить двигло.

. в смысле от постоянных замыкани? Как ты умудрялся его коротнуть? Одновременным замыканием ключей верхнего и нижнего плеча? Так там Dead Time надо ставить!

юзал четырёхконтактный.
помню, что если подавать на обмотки долгое время неизменный сигнал, то будет такое.
хотя потом, когда пришёл паспорт на движок, то там было сказано, что можно так стопорить его.

Долгая подача напруги на обмотки это его нормальный рабочий режим. Главное чтобы напряжение было номинальным.

Полезно, спасибо. Мне в свое время довелось раскурочить 8″ дисковод. Два шаговика лежат дожидаются своего часа. Так, что информация может пригодиться.

У меня этих дисководов полтора десятка штук!

Есть интересная статья по использованию шаговых двигателей
Журнал Современная электроника Октябрь 2004 г. стр. 46-47
Автор: Олег Пушкарев, Омск, конструкция на базе PIC16F84 и
драйвера — ULN2003A. (WWW.SOEL.RU)
Журнал очень рульный, советую почитать, статьи высылают
по почте, по запросу или подписка (в том числе бесплатная).

Еще одна задача — управление двигателем
постоянного тока на 24 в (12В), реверс,
управление скоростью. Есть буржуйская схема,
но без регулятора, могу тиснуть, схема из
стриммера, реверс-технология схемы.

кто знаком с драйвером шины ULN2804a b ULN2004a , какая разници между ними.

Кажется, один для КМОП, другой — для ТТЛ. Схема отличается только номиналом сопротивления от входного штырька до базы транзистора. В одном случае — 10ком (для КМОП), в другом — кажется, 1,5 ком, точно не помню. Ну, и входные уровни соответственно разные. В остальном — одинаково. Я сам года три назад выбирал, какие брать. А использую все же чаще ULN2003 (привычка, чтоли)…

У меня есть движок от древнего лазерного принтера. Двигатель фирмы CANON PM60-H418Z21B можно ли запустить таку вещь? Торчат из него по 3 провода с каждой обмотки. P.S. С шаговиками я делов не имел пока, но очень интересно.

Думаю без проблем. Судя по признакам это униполярный двигатель. Так что определяй где у него середина обмотки и дальше как я описал. Тока замерь сопротивление, чтобы узнать максимальный ток.

Шаговые двигатели и моторы Ардуино 28BYJ-48 с драйвером ULN2003

В этой статье мы поговорим о шаговых двигателях в проектах Ардуино на примере очень популярной модели 28BYJ-48. Так же как и сервоприводы, шаговые моторы являются крайне важным элементом автоматизированных систем и робототехники. Их можно найти во многих устройствах рядом: от CD-привода до 3D-принтера или робота-манипулятора. В этой статье вы найдете описание схемы работы шаговых двигателей, пример подключения к Arduino с помощью драйверов на базе ULN2003 и примеры скетчей с использованием стандартной библиотеки Stepper.

Шаговый двигатель – принцип работы

Шаговый двигатель – это мотор, перемещающий свой вал в зависимости от заданных в программе микроконтроллера шагов и направления. Подобные устройства чаще всего используются в робототехнике, принтерах, манипуляторах, различных станках и прочих электронных приборах. Большим преимуществом шаговых двигателей над двигателями постоянного вращения является обеспечение точного углового позиционирования ротора. Также в шаговых двигателях имеется возможность быстрого старта, остановки, реверса.

Шаговый двигатель обеспечивает вращения ротора на заданный угол при соответствующем управляющем сигнале. Благодаря этому можно контролировать положение узлов механизмов и выходить в заданную позицию. Работа двигателя осуществляется следующим образом – в центральном вале имеется ряд магнитов и несколько катушек. При подаче питания создается магнитное поле, которое воздействует на магниты и заставляет вал вращаться. Такие параметры как угол поворота (шаги), направление движения задаются в программе для микроконтроллера.

Упрощенные анимированные схемы работы шагового двигателя

Основные виды шаговых моторов:

  • Двигатели с переменными магнитами (применяются довольно редко);
  • Двигатели с постоянными магнитами;
  • Гибридные двигатели (более сложные в изготовлении, стоят дороже, но являются самым распространенным видом шаговых двигателей).

Где купить шаговый двигатель

Самые простые двигатели Варианты на сайте AliExpress:

Драйвер для управления шаговым двигателем

Драйвер – это устройство, которое связывает контроллер и шаговый двигатель. Для управления биполярным шаговым двигателем чаще всего используется драйверы L298N и ULN2003.

Работа двигателя в биполярном режиме имеет несколько преимуществ:

  • Увеличение крутящего момента на 40% по сравнению с униполярными двигателями;
  • Возможность применения двигателей с любой конфигурацией фазной обмотки.

Но существенным минусов в биполярном режиме является сложность самого драйвера. Драйвер униполярного привода требует всего 4 транзисторных ключа, для обеспечения работы драйвера биполярного привода требуется более сложная схема. С каждой обмоткой отдельно нужно проводить различные действия – подключение к источнику питания, отключение. Для такой коммутации используется схема-мост с четырьмя ключами.

Драйвер шагового двигателя на базе L298N

Этот мостовой драйвер управляет двигателем с током до 2 А и питанием до 46В. Модуль на основе драйвера L298N состоит из микросхемы L298N, системы охлаждения, клеммных колодок, разъемов для подключения сигналов, стабилизатора напряжения и защитных диодов.

Драйвер двигателя L298N

Драйвер шагового двигателя ULN2003

Шаговые двигателями с модулями драйверов на базе ULN2003 – частые гости в мастерских Ардуино благодаря своей дешевизне и доступности. Как правило, за это приходится платить не очень высокой надежностью и точностью.

Другие драйвера

Существует другой вид драйверов – STEP/DIR драйверы. Это аппаратные модули, которые работают по протоколу STEP/DIR для связи с микроконтроллером. STEP/DIR драйверы расширяют возможности:

  • Они позволяют стабилизировать фазные токи;
  • Возможность установки микрошагового режима;
  • Обеспечение защиты ключа от замыкания;
  • Защита от перегрева;
  • Оптоизоляция сигнала управления, высокая защищенность от помех.

В STEP/DIR драйверах используется 3 сигнала:

  • STEP – импульс, который инициирует поворот на шаг/часть шага в зависимости от режима. От частоты следования импульсов будет определяться скорость вращения двигателя.
  • DIR – сигнал, который задает направление вращения. Обычно при подаче высокого сигнала производится вращение по часовой стрелке. Этот тип сигнала формируется перед импульсом STEP.
  • ENABLE – разрешение/запрет работы драйвера. С помощью этого сигнала можно остановить работу двигателя в режиме без тока удержания.

Одним из самых недорогих STEP/DIR драйверов является модуль TB6560-V2. Этот драйвер обеспечивает все необходимые функции и режимы.

Подключение шагового двигателя к Ардуино

Подключение будет рассмотрено на примере униполярного двигателя 28BYj-48 и драйверов L298 и ULN2003. В качестве платы будет использоваться Arduino Uno.

Подключение шагового двигателя к Ардуино

Еще один вариант схемы с использованием L298:

Подключение шагового двигателя к Ардуино на базе L298

Схема подключения на базе ULN2003 изображена на рисунке ниже. Управляющие выходы с драйвера IN1-IN4 подключаются к любым цифровым контактам на Ардуино. В данном случае используются цифровые контакты 8-11. Питание подключается к 5В. Также для двигателя желательно использовать отдельный источник питания, чтобы не перегрелась плата Ардуино.

Подключение шагового двигателя к Ардуино

Принципиальная схема подключения.

Принципиальная схема подключения шагового двигателя

Еще одна схема подключения биполярного шагового двигателя Nema17 через драйвер L298 выглядит следующим образом.

Обзор основных моделей шаговых двигателей для ардуино

Nema 17 – биполярный шаговый двигатель, который чаще всего используется в 3D принтерах и ЧПУ станках. Серия 170хHSхххА мотора является универсальной.

Основные характеристики двигателя:

  • Угловой шаг 1,8°, то есть на 1 оборот приходится 200 шагов;
  • Двигатель – двухфазный;
  • Рабочие температуры от -20С до 85С;
  • Номинальный ток 1,7А;
  • Момент удержания 2,8 кг х см;
  • Оснащен фланцем 42 мм для легкого и качественного монтажа;
  • Высокий крутящий момент – 5,5 кг х см.

28BYJ-48 – униполярный шаговый двигатель. Используется в небольших проектах роботов, сервоприводных устройствах, радиоуправляемых приборах.

  • Номинальное питание – 5В;
  • 4-х фазный двигатель, 5 проводов;
  • Число шагов: 64;
  • Угол шага 5,625°;
  • Скорость вращения: 15 оборотов в секунду
  • Крутящий момент 450 г/сантиметр;
  • Сопротивление постоянного тока 50Ω ± 7% (25 ℃).

Описание библиотеки для работы с шаговым двигателем

В среде разработки Ардуино IDE существует стандартная библиотека Strepper.h для написания программ шаговых двигателей. Основные функции в этой библиотеке:

  • Stepper(количество шагов, номера контактов). Эта функция создает объект Stepper, которая соответствует подключенному к плате Ардуино двигателю. Аргумент – контакты на плате, к которым подключается двигатель, и количество шагов, которые совершаются для полного оборота вокруг своей оси. Информацию о количестве шагов можно посмотреть в документации к мотору. Вместо количества шагов может быть указан угол, который составляет один шаг. Для определения числа шагов, нужно разделить 360 градусов на это число.
  • Set Speed(long rpms) – функция, в которой указывается скорость вращения. Аргументом является положительное целое число, в котором указано количество оборотов в минуту. Задается после функции Step().
  • Step(Steps) –поворот на указанное количество шагов. Аргументом может быть либо положительное число – поворот двигателя по часовой стрелке, либо отрицательное – против часовой стрелки.

Пример скетча для управления

В наборе примеров библиотеки Stepper.h существует программа stepper_oneRevolution, в которой задаются все параметры для шагового двигателя – количество шагов, скорость, поворот.

Заключение

В этой статье мы с вами узнали, что такое шаговый двигатель, как можно его подключить к ардуино, что такое драйвер шагового двигателя. Мы также рассмотрели пример написания скетча, использующего встроенную библиотеку Stepper. Как видим, ничего особенно сложного в работе с шаговыми моторами нет и мы рекомендуем вам обязательно поэкспериментировать самостоятельно и попробовать включить его в своих проектах Arduino.

Шаговые двигатели (подробный разбор 4 типов)

Общие сведения:

Шаговый двигатель — это бесколлекторный двигатель, ротор которого вращается не плавно, а шагами (дискретно). Полный оборот ротора состоит из нескольких шагов. Меняя форму сигнала, количество импульсов, их длительность и фазовый сдвиг, можно задавать скорость вращения, направление вращения и количество оборотов ротора двигателя.

Шаговые двигатели состоят из ротора (подвижная часть) и статора (неподвижная часть). На статоре устанавливают электромагниты, а части ротора взаимодействующие с электромагнитами выполняются из магнитотвердого (двигатель с постоянными магнитами) или магнитомягкого (реактивный двигатель) материала.

Виды шаговых двигателей по типу ротора:

По типу ротора, шаговые двигатели делятся на: двигатели с постоянными магнитами, реактивные двигатели и гибридные двигатели.

  • Двигатель с постоянными магнитами (ротор из магнитотвердого материала). На роторе установлен один, или несколько, постоянных магнитов. Количество полных шагов в одном обороте таких двигателей, зависит от количества постоянных магнитов на роторе, и количества электромагнитов на статоре. Обычно в одном обороте от 4 до 48 шагов (один шаг от 7,5° до 90° ).
  • Реактивный двигатель (ротор из магнитомягкого материала). Еще такие двигатели называют двигателями с переменным магнитным сопротивлением. Ротор не имеет постоянных магнитов, он выполнен из магнитомягкого материала в виде многоконечной звезды. Данные двигатели встречаются редко, так как у них наименьший крутящий момент, по сравнению с остальными, при тех же размерах. Количество полных шагов в одном обороте таких двигателей, зависит от количества зубцов на звезде ротора, и количества электромагнитов на статоре. Обычно в одном обороте от 24 до 72 шагов (один шаг от 5° до 15°.)
  • Гибридный двигатель (совмещает технологии двух предыдущих двигателей). Ротор выполнен из магнитотвердого материала (как у двигателя с постоянными магнитами), но имеет форму многоконечной звезды (как у реактивного двигателя). Количество полных шагов в одном обороте таких двигателей, зависит от количества постоянных магнитов на звезде ротора, и количества электромагнитов на статоре. Количество шагов в одном обороте таких двигателей может доходить до 400 (один шаг от 0,9°).

Какой тип шагового двигателя у меня?

Если вручную покрутить ротор отключённого двигателя, то можно заметить, что он движется не плавно, а шагами. После того, как Вы покрутили ротор, замкните все провода двигателя и покрутите ротор повторно. Если ротор крутится также, значит у Вас реактивный двигатель. Если для вращения ротора требуется прикладывать больше усилий, значит у вас двигатель с постоянными магнитами или гибридный. Отличить двигатель с постоянными магнитами от гибридного можно подсчитав количество шагов в одном обороте. Для этого не обязательно считать все шаги, достаточно примерно понять, их меньше 50 или больше. Если меньше, значит у Вас двигатель с постоянными магнитами, а если больше, значит у Вас гибридный двигатель.

Виды шаговых двигателей по типу соединения электромагнитов статора:

По типу соединения электромагнитов, шаговые двигатели делятся на: униполярные и биполярные.

На рисунке представлено упрощённое, схематическое, представление обмоток.
На самом деле, каждая обмотка состоит из нескольких обмоток электромагнитов, соединённых последовательно или параллельно

  • Биполярный двигатель имеет 4 вывода. Выводы A и A питают обмотку AA, выводы B и B питают обмотку BB. Для включения электромагнита, на выводы обмотки необходимо подать разность потенциалов (два разных уровня), поэтому двигатель называется биполярным. Направление магнитного поля зависит от полярности потенциалов на выводах.
  • Униполярный двигатель имеет 5 выводов. Центральные точки его обмоток соединены между собой и являются общим (пятым) выводом, который, обычно, подключают к GND. Для включения электромагнита, достаточно подать положительный потенциал на один из выводов обмотки, поэтому двигатель называется униполярным. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.
  • 6-выводной двигатель имеет ответвление от центральных точек обмоток, но обмотка AA не соединена с обмоткой BB. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения электромагнитов. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно.

Какой тип шагового двигателя у меня?

Если у Вашего двигателя 4 вывода, значит он биполярный. Если у Вашего двигателя 5 выводов, значит он униполярный. Но если у Вашего двигателя 6 и более выводов, то это не значит что некоторые из них являются центральными выводами катушек электромагнитов. Дело в том, что есть двигатели, некоторые выводы которых (обычно крайние), электрически замкнуты, так биполярный двигатель может иметь 6 выводов. Точно определить тип соединений, для двигателей с 6 и более выводами, можно только измеряя сопротивление между выводами.

Режимы работы шаговых двигателей:

    Для работы шагового двигателя (вне зависимости от его вида) можно выбрать один из трех режимов работы:
  • Полношаговый режим – ротор поворачивается на 1 шаг за 1 такт.
  • Полушаговый режим – ротор поворачивается на ½ шага за 1 такт.
  • Микрошаговый режим – ротор поворачивается на ¼, ⅛ и т.д. шагов за 1 такт.

Ниже рассмотрены режимы работы, на примере биполярного двигателя с постоянным магнитом и полным шагом 90°.

Полношаговый режим (одна фаза на полный шаг). Номинальные значения шагового двигателя указываются именно для этого режима.

Полношаговый режим (две фазы на полный шаг). Этот режим позволяет увеличить крутящий момент почти в половину от номинального.

Полушаговый режим. Этот режим позволяет увеличить количество шагов в полном обороте в два раза, при незначительном уменьшении крутящего момента.

Микрошаговый режим. Этот режим является наиболее распространённым, он позволяет увеличить количество шагов в полном обороте в четыре раза, благодаря неравномерному распределению токов в обмотках. Снижение токов можно достичь снижением напряжения (как показано на картинке) или подавать полное напряжение через подключаемую внешнюю нагрузку.

Если подавать уровни не «0» – «½» – «1» (как на картинке), а «0» – «¼» – «½» – «¾» – «1», то количество шагов в полном обороте увеличится не в 4 раза, а в 8 раз. Можно увеличить количество шагов в 16, 32, 64 раза и т.д., а если заменить дискретные уровни сигналов на синусоиды, то мотор будет вращаться плавно (без шагов).

Режимы пониженного энергопотребления – доступны только для 8-выводных двигателей. Эти режимы отличаются от обычных тем, что используют только половину фазы (половину электромагнитов). Данные режимы используются редко, так как они значительно снижают крутящий момент двигателя.

Пример работы шаговых двигателей с разными видами роторов:

Подключение шаговых двигателей к Arduino:

Электромоторы нельзя подключать к выводам Arduino напрямую, так как они потребляют значительные токи, шаговые двигатели не являются исключением, поэтому их подключают через драйверы.

Большинство драйверов работают либо с биполярными двигателями, либо с униполярными.

  • Биполярный двигатель можно подключить только к драйверу биполярных двигателей.
  • 6-выводной двигатель можно подключить к любому драйверу. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток внутри двигателя, последовательно или параллельно.
  • Униполярный двигатель, при необходимости, можно подключить и к драйверу биполярного двигателя по простой схеме из нескольких диодов (лучше использовать диоды Шоттки), но такое подключение гарантирует корректность работы униполярного двигателя только в полношаговом режиме.

Управление шаговым двигателем

Электродвигатели преобразуют электрическую энергию в энергию механическую, а что касается шаговых двигателей, то они преобразуют энергию электрических импульсов во вращательные движения ротора. Движение, порождаемое действием каждого импульса, начинается и повторяется с высокой точностью, благодаря чему шаровые двигатели являются эффективными приводами для устройств, требующих точного позиционирования.

Шаговые двигатели на постоянных магнитах включают в себя: ротор с постоянными магнитами, обмотки и магнитопровод статора. Возбуждаемые обмотки создают магнитные северный и южный полюса, как показано на рисунке. Движущееся магнитное поле статора вынуждает ротор все время выравниваться вслед за ним. Это вращающееся магнитное поле можно настраивать, управляя последовательным возбуждением катушек статора, приводящих ротор во вращение.

На рисунке показана схема типичного способа возбуждения двухфазного мотора. В фазе А две катушки статора возбуждены, и это заставляет ротор магнитно притянуться и зафиксироваться, поскольку противоположные магнитные полюса взаимно притягиваются. Когда обмотки фазы А выключается, включается обмотки фазы В, ротор поворачивается по часовой стрелке (англ. CW – по часовой стрелке, CCW – против часовой стрелки) на 90°.

Далее фаза В отключается, и фаза А включается, но полюса располагаются теперь противоположно тому, как было в самом начале. Это приводит к следующему повороту на 90°. Далее фаза А выключается, включается фаза В в обратной полярности.. Повторение этих действий приводит ротор во вращение по часовой стрелке шагами по 90°.

Шаговое управление, показанное на рисунке, называется управлением с одной активной фазой. Более приемлемый способ шагового управления — управление с двумя активными фазами, когда обе фазы мотора всегда включены, однако полярность в одной из них меняется, как показано на рисунке.

Такое управление приводит к движению ротора шагового двигателя, при котором он выравнивается при каждом шаге в центре образующихся северного и южного полюсов, между выступами магнитопровода. Поскольку обе фазы всегда включены, то данный метод управления дает на 41,4% больший вращающий момент, чем управление с одной активной фазой, но требует вдвое больше электрической мощности.

Шаговый двигатель может быть и «полушаговым», тогда добавляется стадия выключения в процессе перехода между фазами. Это делит угол шага напополам. Например, вместо 90° шаговый мотор может делать повороты по 45° на каждом «полушаге», как показано на рисунке.

Но полушаговый режим вносит потери во вращающий момент на 15-30%, по сравнению с шаговым управлением с двумя активными фазами, поскольку одна из обмоток не активна во время половины шага, и это в итоге потеря электромагнитной силы, действующей на ротор, то есть чистая потеря вращающего момента.

Двухфазное шаговое управление подразумевает наличие двухполюсной обмотки на статоре. Каждая фаза имеет свою обмотку, и при реверсе тока через обмотки меняются и электромагнитные полярности. Выходной каскад типичного двухфазного драйвера изображен на рисунке. Схема управления приведена в таблице. Видно, как просто меняя направление тока через обмотки, можно менять и магнитную полярность в фазах.

Другой типичный вид обмотки — однополюсная обмотка. Здесь обмотки разделены каждая на две части, и когда одна часть обмотки возбуждается — создается северный полюс, когда другая часть возбуждается — возникает южный полюс. Такое решение называется однополюсной обмоткой, так как электрическая полярность ответственная за ток никогда не меняется. Шаги управления показаны на рисунке.

Такой дизайн позволяет использовать более простой электронный блок. Однако, здесь почти 30% вращающего момента теряется, в сравнении с двухполюсной обмоткой, потому что в катушках в два раза меньше провода, чем в двухполюсной обмотке.

Другие углы шага

Для получения меньших углов шага необходимо наличие большего количества полюсов как на роторе, так и нас статоре. Ротор для 7.5° имеет 12 пар полюсов, а магнитопровод статора обладает 12 выступами. Два выступа на катушку, и две обмотки.

Таким образом получается 48 полюсов для каждого шага по 7.5°. На рисунке можно рассмотреть 4 полюсных выступа в разрезе. Конечно, можно комбинировать шаги для достижения больших перемещений, например шесть шагов по 7.5° приведут к повороту ротора на 45°.

Точность шаговых двигателей составляет 6-7% на шаг (без накопления). Шаговый двигатель с шагом в 7.5° будет всегда в пределах 0,5° от теоретически предсказанного положения, независимо от того, сколько шагов уже сделано. Ошибка не будут накапливаться, потому что механически каждые 360° повторяются пошагово. Без нагрузки физическое положение полюсов статора и ротора относительно друг друга все время будет одним и тем же.

Шаговые двигатели обладают собственной резонансной частотой, поскольку являются системами подобными грузу на пружине. Когда частота шагов совпадает с собственной резонансной частотой двигателя, можно слышать изменение шума, создаваемого двигателем, кроме того усиливается вибрация.

Точка резонанса зависит от применения двигателя, от его нагрузки, но обычно резонансная частота лежит в диапазоне от 70 до 120 шагов в секунду. В худшем случае двигатель утратит точность управления, если войдет в резонанс.

Простой способ избежать проблем, связанных с резонансом в системе, — изменить частоту шагов в сторону от точки резонанса. В режиме полушага или микрошага масштаб проблемы резонанса уменьшается, поскольку с увеличением скорости точка резонанса остается все дальше позади.

Вращающий момент шагового двигателя является функцией от: скорости шага, тока обмотки статора, типа двигателя. Мощность конкретного шагового двигателя также связана с этими тремя факторами. Вращающий момент шагового двигателя представляет собой сумму момента трения и момента инерции.

Момент трения в граммах на сантиметр — это сила, необходимая для перемещения груза весом в определенное количество грамм при плече рычага длиной в 1 см. Важно отметить, что с увеличением скорости шага двигателя возрастает противо-ЭДС в моторе, то есть генерируемое двигателем напряжение. Это приводит к ограничению тока в обмотках статора и к снижению вращающего момента.

Управление двумя шаговыми двигателями по

Материал перевел и подготовил RA3TOX (сайт “Радиофанат”)

В данной статье описывается простой способ ручного управления четырехполюсным однополярным шаговым двигателем. Для этого необходим галетный переключатель, восемь недорогих выпрямительных диодов и несколько других компонентов.

Полная схема для ручного управления шаговым электродвигателем показана на рисунке 1. Поворачивая галетный переключатель S1 по часовой стрелке, шаговый двигатель вращается также по часовой стрелке. Поверните поворотный переключатель против часовой стрелки, а шаговый двигатель вращается против часовой стрелки. Поверните поворотный переключатель, и шаговый двигатель остановится с полным крутящим моментом (называемым удерживающим моментом). Это имитирует базовые функции управления, доступные со стандартного контроллера шагового двигателя – за исключением того, что ручной контроллер шагового двигателя работает полностью вручную. С помощью светодиода и геркона можно контролировать состояние двигателя, когда он завершит один полный оборот.


Рис.1. Схема устройства.

Возможные аврианты применения устройства – это позиционирование световых или вентиляционных отверстий, ручное вращение стрелок настенных часов, дистанционное управление роботами и роботизированными игрушками, видеокамерами. Для радиолюбителей возможно его применение в поворотных устройствах антенн, вращении конденсаторов в магнитных рамочных антеннах и т.п.

Четырехполюсный униполярный шаговый двигатель может, как правило, управляться четырьмя различными способами – каждый из которых имеет свои преимущества и недостатки:

  • Управление волной (Wave control) – это самая простая форма управления, так как она возбуждает только одну обмотку (или фазу) за раз. Его главный недостаток – плохой крутящий момент.
  • Полношаговое управление (Full-step control) – это простое средство управления с хорошим крутящим моментом, использующее одновременно две обмотки двигателя.
  • Полушаговое управление (Half-step control) . Это более сложная форма управления,имеющая по сравнению с предыдущим методов в два раза больше шагов. Он имеет хороший крутящий момент и стабилизирует работу двигателя. Однако этот метод не подходит при ручном управлении.
  • Микрошаговый контроль (Micro-steppping control) – это комплексная форма управления со сложной схемой, которая обеспечивает бесчисленные «промежуточные шаги» и высокую точность. Он часто используется в промышленности.

Для наших целей нам лючше всего подходит полношаговый контроль, так как он прост в реализации и имеет хороший крутящий момент. Для этого необходимо, чтобы 4-х битная управляющая последовательность двигалась вправо или влево по обмоткам шагового двигателя. Однополюсный четырехпозиционный галетный переключатель будет выполнять эту задачу с помощью мультиплексирования восемью диодами. Однако, поскольку такие переключатели обычно не имеют вращения на 360 градусов, вместо них используется тройной четырехпозиционный переключатель.

Следует отметить, что стандартный переключатель здесь не подходит , так как в момент переключения происходит кратковременная потеря питания на выводах двигателя во время вращения, что неблагоприятно скажется на крутящем моменте, особенно, если мотор установлен вертикально. Поэтому здесь используется переключатель ( make-before-break rotary switch ), который создает новый контакт перед тем как разорван предыдущий. Контакты переключаются как-бы в нахлест. Электролитический конденсатор C1 сглаживает мгновенный всплеск напряжения, когда переключатель перемещается. Если не требуется удерживающий крутящий момент, цепь питания может быть отключена, как только шаговый двигатель достигнет нужного положения. Момент затяжки (остаточный крутящий момент, когда шаговый двигатель выключен) обычно составляет одну десятую от состояния удержания крутящего момента. Красный светодиод. D9 указывает наличие питающего напряжения (состояние выключателя S3 – On/Off ).

Идентификация обмоток двигателя

Как известно, нет стандартного цветового кодирования для идентификации проводов четырехфазного униполярного шагового двигателя. Автор опробовал шесть шаговых двигателей, из которых только два имели одинаковую цветовую маркировку проводов! Такие двигатели иногда имеют пять выводов, иногда шесть, а иногда и восемь выводов (для каждой из четырех обмоток). К счастью, задача идентификации не слишком сложна. Первый шаг – найти общий провод или выводы. Шестивыводный четырехобмоточный шаговый двигатель имеет два общих провода, которые, скорее всего, находятся в центре двух рядов по три (они часто используются в принтерах или факсимильных аппаратах). Пятипроводный двигатель имеет один общий вывод. Эти двигатели обычно используется в 5-дюймовых дисководах.

Обмотки легко протестировать с помощью мультиметра: Если имеется шесть проводов – измерьте сопротивление на всевозможные комбинации выводов (например, зелено-белое, зелено-красное, бело-красное . ). Большое сопротивление указывает на последовательное соединение двух обмоток, а малое на отдельную обмотку. Когда определите центральные выводы – соедините их вместе.
В случае пяти проводов, находим только один провод, при котором измеряются самые низкие сопротивления. Это и будет общий провод.

Большинство четырехполюсных однополярных шаговых двигателей питаются напряжением 12 вольт или что-то около этого. Рекомендуется использовать регулируемый источник питания на 12 В, так как нерегулируемое питание может существенно повышаться 12 В, что может привести к чрезмерному нагреву двигателя или даже к перегоранию. Источник питания должен обеспечить мощность 6 Вт или 500 мА для небольших двигателей (диаметром от 3 до 4 см).

Следующим шагом является подключение общего провода двигателя к положительной клемме источника питания 12 В. Теперь возьмите отрицательный провод источника 12 В и поочередно подключите его к четырем выводам в различных последовательностях. После того, как вы нашли последовательность, которая продвигает двигатель небольшими шагами по часовой стрелке, обозначьте эти провода от А до D. То, что вы только что достигли – это управление волной (Wave Control), см. Таблицу 1.

Таблица 1: Wave Control

Наконец, обмотки А-D должны быть под напряжением в последовательности, которая показанная в таблице 2, и которая является полношаговым управлением (Full-step Control).

Таблица 2: Full-step Control

Таблица, нарисованная здесь, является наиболее логически последовательным способом, и вы сможете оценить смещение двоичной последовательности 1-0-0-1 по проводам шагового двигателя.

Графическое подключение обмоток (или фаз) от А до D показано на рисунке 2.


Рис.2 Униполярный привод.

Устройство собрано на макетной плате. Элементы переключения – галетник и тумблер включения питания монтируются на передней панеле прибора. Также на корпусе прибора установлено гнездо для подключения источника питания.


Рис.3. Компоновка элементов.

На галетном переключателе необходимо убрать ограничитель перемещения ползунка, чтобы он проворачивался по кругу.

В конструкции использованы резисторы мощностью 0.25W 5%, электролитический конденсаторы 1000 мкф на 16 В. Полупроводниковые диоды D1. D8 типа 1N4001 50V 1A . Светодиод D9 – 5 мм красный, D10 – 5 мм зеленый. Для контроля оборотов используется маленький магнит, который устанавливается на подвижной планке, закрепленной на валу шагового двигателя. Геркон фиксируется в подходящем месте и будет замыкаться в момент прохождения около него магнита.


Рис.4. Размещение элементов в корпусе.

В случае использования мощного шагового двигателя рекомендуется увеличить емкость электролитического конденсатора. При этом понадобится и более мощный исочник питания.

Хотя большинство 12 вольтовых однополярных шаговы двигателей рассчитаны на непрерывное питание, они могут достаточно ощутимо нагреваться. Если полный крутящий момент не требуется, простым решением является установка 15-омного проволочного резистора в одну из линий питания обмоток.

Тяговое усилие маленького четырехфазного униполярного шагового двигателя довольно сильно ощущается пальцами, и такие двигатели могут найти большое применений. Как видите, затраты на изготовление такого привода во много раз меньше, чем у обычной системы управления шаговым двигателем на микроконтроллерах или микросхемах. Примечание от RA3TOX.

На мой взгляд, самый дефицитный элемент в этом приводе – это галетный переключатель. Можно попытаться найти его на AliExpress по названию ” make-before-break rotary switch ” или переделать (расширить) подвижную пластину стандартного галетника. Есть керамические галетник с широким контактом, как показано на левом рисунке. На среднем рисунке галетник с узким коммутирующим контактом (самый распространенный вариант). Проще всего переделать контакты на коричневых открытых галетниках (правый рисунок). Из представленных образцов наиболее применим средний галетник (2 направления на 5 положений), но надо поискать такой с широким ползунковым контактом, при этом два крайних положения 4 и 5 следует замкнуть.


Несколько конструкций переключателей.

Управление шаговым двигателем. Инструкция

Это довольно простая схема контроллера шагового двигателя, которая позволит вам осуществить управление шаговым двигателем через параллельный порт вашего компьютера.

Шаговый двигатель можно применить в конструировании роботов, в изготовлении печатных плат, использовать в качестве микродрели, автоматической кормушки для аквариумных рыбок и т.д. Если вы никогда не работали с шаговыми двигателями, то эта статья для вас.

Как работает шаговый двигатель?

Шаговые двигатели отличаются от регулируемых двигателей постоянного тока. Вместо того чтобы вращаться как двигатели постоянного тока, шаговый двигатель совершает дискретное вращение под воздействием серии импульсов. В нашем примере двигателю необходимо 48 импульсов чтобы совершить полный оборот в 360 градусов.

Другое преимущество шаговых двигателей — то, что их скорость вращения может быть достигнута почти мгновенно при изменении направления вращения на противоположное.

Шаговый двигатель состоит из ротора — постоянного магнита, который вращается внутри, и статор — четыре катушки (север, восток, юг, запад), которые являются частью корпуса и не перемещаются. Ротор совершает вращение посредством последовательных импульсов напряжение постоянного тока подаваемого к одной или двум катушкам одновременно.

Устройство Шагового двигателя.

Чтобы управлять шаговым двигателем необходим контроллер. Контроллер — схема, которая подает напряжение к любой из четырех катушек статора. Устройство может быть построено с использованием интегральной микросхемы типа ULN2003 (отечественный аналог К1109КТ22) состоящая из набора мощных составных ключей с защитными диодами на выходе. Наличие защитных диодов позволяет подключать индуктивные нагрузки без дополнительной защиты от выбросов обратного напряжения.

Подключения шагового двигателя.

Однополярный двигатель должен иметь пять или шесть контактов в зависимости от модели. Если двигатель имеет шесть контактов то необходимо соединить выводы 1 и 2 (красный) вместе и подключить их к плюсу 12-24V напряжения питание. Оставшиеся выводы a1 (желтый), b1 (черный), a2 (оранжевый), b2 (коричневый) подключить к контроллеру согласно схеме.

Способы управления.

Есть несколько способов, которые вы можете использовать, чтобы управлять шаговым двигателем.

1. Одиночные импульсы — самый простой способ. Одновременно подключается только одна катушка. Необходимо 48 пульсов чтобы ротор совершил один полный оборот. Каждый пульс перемещает ротор на 7,5 градусов.

2. Двойной импульс — одновременное подключение двух соседних катушек. В этом случае также необходимо 48 пульсов чтобы ротор совершил один полный оборот. Каждый пульс перемещает ротор на 7,5 градусов.

3. Комбинированные импульсы — чередование первого и второго способа. Двигатель нуждается в 96 пульсах, чтобы совершить один оборот. Каждый пульс перемещает ротор приблизительно на 3,75 градуса.

Программное обеспечение контроллера шагового двигателя.

Для управления работой шагового двигателя используем компьютер и программу. При использовании компьютера вы будете в состоянии сделать намного больше с вашим шаговым двигателем и наиболее важно — визуализировать, как ток течет через катушки.

В программе понятный графический интерфейс, который позволяет точно управлять скоростью двигателя и направлением вращения в реальном времени, а также позволяет выбирать способы управления. Программа работает с версией Windows (98/ME/2000/XP).

Файлы к данной схеме (1,5 MiB, скачано: 8 339)

Читайте также:  Что делать, если нагревается проводка в квартире?
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector