Зарядное устройство для гальванических элементов

Зарядное устройство для гальванических элементов

И. АЛИМОВ Амурская обл.

Идея восстановления разряженных гальванических элементов подобно аккумуляторным батареям не нова. Восстанавливают элементы с помощью специальных зарядных устройств. Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи “Крона ВЦ”, БАСГ и другие.

Наилучший способ регенерации химических источников питания – пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- около 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.

Лучших результатов можно достигнуть, если применять зарядное устройство, выполненное по схеме, представленной на рис. 1. В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.


рис. 1

Параллельно диодам Д1 и Д2 включены конденсаторы C1 и С2. На рис. 2 показана осциллограмма тока, проходящего через батарею. Заштрихованная часть периода – это время, в течение которого через батарею протекают импульсы разрядного тока.


рис. 2

Эти импульсы, очевидно, особым образом влияют на ход электрохимических процессов в активных материалах гальванических элементов. Процессы, происходящие при этом, еще недостаточно изучены и описания их нет в популярной литературе. При отсутствии импульсов разрядного тока (что бывает при отсоединении конденсатора, включенного параллельно диоду) регенерация элементов практически прекращалась.

Опытным путем установлено, что марганцево-цинковые гальванические элементы сравнительно мало критичны к величине постоянной составляющей и форме отрицательных импульсов зарядного тока. Это позволяет использовать зарядное устройство без дополнительной регулировки постоянной и переменной составляющих зарядного тока для восстановления, различных элементов и батарей. Отношение постоянной составляющей тока заряда к эффективному значению его переменной составляющей должно быть в пределах 5-25.

Производительность зарядного устройства можно повысить, включая для заряда по несколько элементов последовательно. При этом необходимо учесть, что в процессе заряда э. д. с. элементов может возрастать до 2-2,1.в. Исходя из этого и зная напряжение на вторичной обмотке трансформатора, определяют число одновременно заряжаемых элементов.

Подключать к зарядному устройству батареи типа 3336Л удобнее через лампочку накаливания 2,5в Х 0,2а, играющую роль бареттера и одновременно служащую индикатором степени заряда. По мере восстановления электрического заряда батареи свечение лампочки уменьшается. Элементы типа “Марс” (373) необходимо подключать без лампочки, так как постоянная составляющая зарядного тока такого элемента должна быть 200-400 ма. Элементы 336 подключают группами по три штуки,включенных последовательно. Условия заряда такие же, как и для батарей типа 3336. Зарядный ток для элементов 312, 316 должен быть 30-60 ма. Возможен одновременный заряд больших групп батарей 3336Л (3336Х) непосредственно от сети (без трансформатора) через два включенных последовательно диода Д226Б, параллельно которым включен конденсатор 0,5 мкф с рабочим напряжением 600 в.

Зарядное устройство может быть выполнено на базе трансформатора электробритвы “Молодость”, пмеющего две вторичные обмотки с напряжением 7,5 в. Удобно использовать также накальное напряжение 6,3 в любого сетевого лампового радиоприемника. Естественно, то или иное решение выбирают в зависимости от требуемого максимального зарядного тока, определяемого типом восстанавливаемых элементов. Из этого же исходят, выбирая выпрямительные диоды.


рис. 3

Для того, чтобы оценить эффективность данного метода восстановления гальванических элементов и батарей, на рис. 3 представлены графики разрядного напряжения для двух батарей 3336Л при сопротивлении нагрузки Rн=10 ом. Сплошными линиями показаны кривые разряда новых батареи,а пунктирными – после двадцати полных циклов разряд – заряд. Таким образом, работоспособность батарей после двадцатиразового использования еще вполне удовлетворительна.

Сколько же циклов разряд-заряд могут выдерживать гальванические элементы и батареи? Очевидно, это сильно зависит от условий эксплуатации, сроков хранения и других факторов. На рис. 4 показано изменение, времени разряда на нагрузку Rн=10 ом двух батарей 3336Л (кривые 1 и 2) в течение 21 цикла разряд-заряд. Батареи разряжались до напряжения не ниже 2,1 в, режим заряда обеих батарей – одинаков. В течение указанного времени эксплуатации батарей время разряда уменьшилось со 120-130 мин до 50-80 мин, то есть почти вдвое.


рис. 4

Такое же уменьшение емкости допускается техническими условиями в конце установленного максимального срока хранения. Практически удается восстанавливать элементы и батареи до тех пор, пока у них не будут полностью разрушены цинковые стаканчики или не высохнет электролит. Установлено, что больше циклов выдерживают элементы, интенсивно разряжающиеся на мощную нагруэку (например, в фонариках, в блоках питания электробритв). Не следует разряжать элементы и батареи до напряжения ниже 0,7 в на элемент. Восстанавливаемость элементов 373 относительно хуже, так как после 3-6 циклов их емкость резко уменьшается.

О необходимой продолжительности заряда можно сделать, вывод, пользуясь графиком; представленным на рис. 4. При увеличении времени заряда свыше 5 часов восстановленная емкость батарей увеличивается в среднем весьма незначительно. Поэтому можно считать, что при указанных величинах зарядного тока минимальное время восстановления составляет 4-6 часов, причем явных признаков конца заряда мар-ганцево-цинковые элементы не имеют и к перезаряду нечувствительны.

Применение асимметричного тока оказывается полезным также для зарядки и формовки аккумуляторов и аккумуляторных батарей. Этот вопрос, однако, еще требует проверки на практике и может открыть новые интересные возможности аккумуляторов.

Регенерация “часовых” гальванических элементов

Схема зарядного устройства приведена на рис.1. Работает оно по известному принципу – зарядка восстанавливаемого гальванического элемента асимментричным током. Зарядный ток элемента G1, подключенного к контактам X2 и X3, протекает через диод VD4. Среднее значение этого тока определяется в основном номиналами резисторов R2, R3 и в нашем случае не превышает 2.5. 3 мА. А разрядный ток элемента, текущий через резистор R1 и открывшийся в обратном направлении светодиод HL2, равен примерно 0.15 мА.Индикаторами состояния восстанавливаемого элемента служат светодиоды HL1 и HL2, ограничителями степени его зарядки – диоды VD1-VD3.

Зарядка элемента происходит во время положительного полупериода сетевого напряжения. Если елемент сильно разряжен, то напряжение на нем не превышает, как правило, 1 В. Поэтому напряжение на последовательно включенных диоде VD7 (0.7 В), светодиоде HL2 (2 В) и элементе G1 будет 3.7. 4 В. В то же время суммарное напряжение на последовательно соединенных диодах VD1, VD2, VD3 (по 0.7 В) и светодиоде HL1 (2 В) составит примерно 4.1 В. Это означает, что ток в этом случае станет протекать (в основном) через элемент, и светодиод HL2 будет светиться значительно ярче, чем светодиод HL1. А поскольку они разного цвета свечения, то легко определить, в каком состоянии находится элемент. В данном случае ярче должен светиться светодиод HL2 – зеленый.

По мере восстановления элемента напряжение на нем станет повышаться, а это значит, что теперь большая часть тока потечет через светодиод HL1, его яркость свечения начнет возрастать, а яркость светодиода HL2, напротив, ослабевать. К концу цикла регенерации элемента яркость красного светодиода возрастает, а зеленый будет светиться еле-еле.

В принципе, длительность цикла восстановления работоспособности элемента может быть и сколь угодно большой – опасаться выхода элемента из строя не стоит, так как зарядный ток, текущий через него, мал.

Читайте также:  Термометр на датчике se97b и avr-микроконтроллере

Конструируя такое устройство, основное внимание следует уделить безопасности – ведь восстанавливаемый элемент гальванически связан с сетью.

Возможная конструкция и монтаж деталей предлагаемого устройства для регенерации элементов питания электронных часов показаны на рис. 2. Его цилиндрическим корпусом, защищающим пользователя от поражения напряжением сети или разрушения элемента (редко, но случается!), служит пластмассовый контейнер из-под лекарства с внутренним диаметром 20 и глубиной 48 мм. Подойдет, конечно, другой подходящий по размерам корпус, но обязательно из изоляционного материала, например, контейнер из-под фотопленки. В таком случае надо будет соответсвенно скорректировать размеры печатной платы и вставки с контактами для регенерируемого элемента.

Печатная плата выполнена из двустороннего фольгированного стеклотекстолита толщиной 2 мм. Она должна плотно входить в корпус и надежно задерживаться в нем. В донной части корпуса делается отверстие для сетевого провода, длина которого всего несколько сантиметров. Так сделано специально, чтобы было удобно устанавливать элемент в устройство, когда вилка провода (X1) вставлена в розетку сети. В боковой стенке корпуса, в соотвествии с расположением светодиодов, просверливают два смотровых “окна” диаметром 4 мм.

Основой контактов X2 и X3, фиксирующих восстанавливаемый элемент, служит вставка диаметром 20 мм из одностороннего фольгированного стеклотекстолита толщиной 2 мм. В ней выпилено овальное отверстие размерами 9×13 мм и просверлено отверстие диаметром 2 мм для винта (или заклепки) пружинящего контакта X2. Функцию контакта выполняет пластинка диаметров 20 мм из луженой фольги или жести, припаянная к фольгированной стороне вставки. Этой пластиной вставка припаяна к токонесущей площадке на печатной плате, с которой соединен анодный вывод светодиода HL2. Так образован минусовый контакт для восстанавливаемого элемента. Плюсовой контакт (X2), вырезанный из латуни, должен с небольшим усилием вращаться вокруг винта (или заклепки), а с фольгированной стороны соединен с катодным выводом светодиода VD4.

Восстанавливаемый элемент вставляют в овальное отверстие вставки минусовой стороной вниз (в середину или ближе к краю) в зависимости от его габаритов и прижимают пружинным контактом. Затем корпус закрывают пластмассовой крышкой, после чего устройство можно подключать к сети.

Автор разработки:
Поделиться в социальных сетях

Зарядное устройство для гальванических элементов

Методы восстановления химических источников тока

Для восстановления работоспособности аккумуляторов (многократно заряжаемых гальванических элементов, основанных на обратимом преобразовании электрической энергии в химическую и наоборот) используют специальные зарядные устройства, позволяющие «закачать» в разряженный аккумулятор очередную порцию энергии. В отличие от аккумуляторов, гальванические элементы и батареи одноразового использования изначально не предлагалось подзаряжать (иначе они и именовались бы по-иному). Однако в процессе эксплуатации некоторых гальванических элементов и батарей выявилась возможность частичного восстановления их свойств путем зарядки.

Для зарядки аккумуляторов используют несколько методов, основным из которых следует считать зарядку постоянным оком. Зачастую расчетное время полной зарядки составляет 0 час. Помимо классического, используют метод зарядки по амперажу (правилу ампер-часов), зарядки пульсирующим и (или) симметричным током, зарядки при постоянном напряжении, ассиметрующей попеременной зарядки-разрядки с регулируемым соотношением и преобладанием зарядной компоненты, экспресс-заряд, заряд ступенчатым током, «плавающий» заряд, компенсационный подзаряд и т.д.

Неплохие результаты дает зарядка аккумулятора током, изменяющимся в соответствии с так называемым «законом ампер-часов» Вудбриджа. В начале зарядки ток максимален, а затем уменьшается по закону, описываемому экспоненциальной кривой. При зарядке в соответствии с «законом ампер-часов» начальный ток может достигать 80% от емкости аккумулятора, в

результате чего время зарядки значительно сокращается.

Каждый из перечисленных способов имеет как преимущества, так и недостатки. Самым распространенным и надежным считается зарядка постоянным током. Появление микросхем стабилизаторов напряжения, позволяющих работать в режиме стабилизации тока, делает применение этого способа еще более привлекательным. Кроме того, только зарядка постоянным током обеспечивает наилучшее восстановление емкости аккумулятора в случае, когда процесс разбивают, как правило, на две ступени: заряжают номинальным током и вдвое меньшим.

Например, номинальное напряжение батареи из четырех аккумуляторов Д-0,25 емкостью 250 мА-ч — 4,8. 5 6. Номинальный зарядный ток обычно выбирают равным 0,1 от емкости, т.е. 25 мА. Заряжают таким током до тех пор, пока напряжение на аккумуляторной батарее не достигнет 5,7. 5,8 6 при подключенных клеммах зарядного устройства, а затем в течение двух-трех часов продолжают заряжать током около 12 /и/А.

Возможность увеличения срока службы сухих гальванических элементов (метод регенерации) была заложена патентом Эрнста Веера в 1954 г. (Патент США) [13.3]. Регенерацию осуществляют пропусканием через гальванический элемент или их группу асимметричного переменного тока с соотношением полупериодов 1:10. По данным разных авторов средний срок службы гальванических элементов может быть увеличен таким образом от 4 до 20 раз.

Согласно практическим рекомендациям фирмы «Варта» (ФРГ):

  1. регенерации поддаются элементы, напряжение которых ниже номинала не более чем на 10%;
  2. напряжение для регенерации элемента не должно превышать более чем на 10% номинальное значение;
  3. ток регенерации должен быть в пределах 25. 30% от максимального разрядного тока для данного элемента;
  4. время регенерации должно в 4,5. 6 раз превышать время разрядки;
  5. регенерацию следует производить непосредственно вслед за разрядкой батареи;
  6. не следует производить регенерацию для элементов с поврежденным цинковым корпусом, с вытекшим электролитом.

Помимо зарядно-разрядных операций для некоторых видов аккумуляторов актуальным вопросом является регенерация (вое-

становление) по мере возможности их исходных свойств, утраченных в результате неправильного хранения и/или эксплуатации.

Приемы «реанимации» и восстановления ресурсов разряженных электрических батарей (сухих гальванических батарей и элементов) в общих чертах похожи и порой отвечают соответствующим процедурам для аккумуляторов.

Устройства для заряда, восстановления или регенерации химических источников тока обычно содержат стабилизатор тока, иногда устройство защиты от перенапряжения или перезарядки, приборы и схемы контроля и регулирования.

Так, например, на практике для никель-кадмиевых аккумуляторов получили распространение несколько типов зарядных устройств.

Зарядное устройство с фиксированным постоянным током. Зарядку аккумулятора прекращают вручную по истечении времени, достаточного для полной зарядки. Зарядный ток должен составлять 0,1 от емкости аккумулятора в течение 12. 15 ч.

Ток зарядки фиксированный. Напряжение на заряжаемом аккумуляторе контролируется пороговым устройством. При достижении заданного напряжения зарядка автоматически прекращается.

Зарядное устройство заряжает аккумулятор постоянным током в течение фиксированного времени. Зарядка автоматически прекращается по истечении, например, 15 ч. Последний вариант зарядного устройства имеет существенный недостаток. Перед зарядкой аккумулятор должен быть разряжен до напряжения 1 6, только тогда при зарядке током 0,1 от емкости аккумулятора в течение 15 ч аккумулятор зарядится до номинальной емкости. В противном случае при зарядке не полностью разряженного аккумулятора в течение указанного времени произойдет его перезарядка, что ведет к сокращению времени службы.

В первых двух вариантах устройств зарядка постоянным стабильным током не является оптимальной. Исследованиями установлено, что в самом начале цикла зарядки аккумулятор наиболее восприимчив к сообщаемому ему количеству электричества. К концу зарядки процесс накопления энергии аккумулятора замедляется.

Зарядное устройство для Ni-MH аккумулятора

Поводом для разработки и изготовления предлагаемого устройства послужило желание заменить гальванический элемент питания настенных электромеханических часов аккумулятором. Имеющееся в наличии зарядное устройство позволяло заряжать только чётное число аккумуляторов, а нужно было заряжать один Ni-MH аккумулятор типоразмера АА.

При просмотре литературы заинтересовало “Автоматическое зарядное устройство аккумуляторной батареи”, описанное Н. Скриндевским в “Радио”, 1991, № 12, с. 28-30. Понравилась заложенная в эту конструкцию идея заряжать аккумулятор циклически, чередуя интервалы зарядки с интервалами измерения ЭДС аккумулятора. В результате макетирования и отладки получилось предлагаемое зарядное устройство.

Основные технические характеристики

Напряжение питания, В . 5

Ток зарядки, мА . 150

Порог отключения тока зарядки, В. 1,38

Порог включения тока зарядки, В . 1

Длительность цикла зарядки, с. 40

Читайте также:  Как не просверлить проводку в стене?

Длительность измерения, с. 1

Схема этого устройства изображена на рис. 1. На транзисторе VT2, резисторах R9-R12 и светодиоде HL1 собран источник тока. Им управляет транзистор VT1. Светодиод HL1 имеет две функции: служит источником стабильного напряжения, поступающего на базу транзистора VT2 через резистор R10, и одновременно индикатором зарядки батареи. Резисторы R11 и R12 задают ток зарядки, значение которого в миллиамперах выбрано численно равным номинальной ёмкости аккумулятора G1 в миллиампер-часах. Резистор R9 ограничивает ток через светодиод HL1. Диод VD2 предотвращает разрядку аккумулятора G1 через зарядное устройство в случае отключения источника питания или прекращения подачи электроэнергии.

Рис. 1. Схема устройства

На компараторе напряжения DA1.1, резисторах R1-R6, конденсаторе C1 и диоде VD1 собран генератор последовательности импульсов длительностью 40 с с паузой 1 с. В паузах между импульсами происходит измерение ЭДС аккумулятора.

На время измерения источник тока отключается от заряжаемого аккумулятора. В это время происходит сравнение напряжения на аккумуляторе с образцовым – тем, до которого необходимо зарядить аккумулятор. Диод VD4 препятствует попаданию блокирующего напряжения на движок подстроечного резистора R14.

На компараторе напряжения DA1.2 и резисторах R13-R17 собран триггер Шмитта, который контролирует напряжение на заряжаемом аккумуляторе. Для правильной работы триггера на инвертирующий вход компаратора DA1.2 с выхода компаратора DA1.1 во время зарядки через диод VD3 поступает блокирующее напряжение.

По достижении напряжения на аккумуляторе, заданного подстроечным резистором R14 и приложенного к инвертирующуму входу компаратора DA1.2, на выходе последнего появляется напряжение высокого уровня, которое через диод VD5 поступает на инвертирующий вход компаратора DA1. 1, блокируя работу генератора. На выходе компаратора DA1.1 устанавливается низкий уровень напряжения, транзистор VT1 закрывается, светодиод HL1 гаснет.

Одновременно напряжение высокого уровня с выхода компаратора DA1.2 поступает и на базу транзистора VT3, открывая его, светодиод HL2 включается, сигнализируя о завершении зарядки аккумулятора. Образцовое напряжение на инвертирующем входе компаратора DA1.2 выбрано равным 1,38 В – таким же, как у имеющегося в наличии зарядного устройства промышленного изготовления.

Микросхему LM393N можно заменить на К1401СА3А или другую из многих её аналогов, а транзисторы КТ312В – на аналогичные с другими буквенными индексами или на транзисторы серии КТ315. Заменой транзистора КТ816В может служить КТ814В. Вместо диодов Д223 подойдут Д220 или серии КД522, а вместо КД226А – любой выпрямительный диод с допустимым прямым током не менее 200 мА. При замене светодиодов серии АЛ307 на более современные рекомендуется увеличить номиналы резисторов R9 и R20, чтобы уменьшить до приемлемого уровня яркость их свечения.

Оксидные конденсаторы С1, С2 – импортные или отечественные серий К50-16, К50-35. Конденсаторы С3 и С4 – любые керамические или плёночные. Подстроечный резистор R14 – импортный. Постоянные резисторы – МЛТ-0,125 или аналогичные.

Зарядное устройство собрано в небольшом корпусе от стоматологического наконечника. С открытой крышкой оно показано на рис. 2. Первоначально планировалось расположить держатель аккумулятора (контакты X1 и X2) непосредственно на печатной плате, и плата разработана именно под такое его расположение. В последующем держатель был вклеен в крышку корпуса.

Рис. 2. Зарядное устройство в сборе

Чертёж печатной платы зарядного устройства изображён на рис. 3. Для микросхемы LM393N на ней установлена панель. Постоянные резисторы установлены как параллельно, так и перпендикулярно поверхности платы. Один из выводов резистора R2 и вывод
катода диода VD1 впаяны в плату, а оставшиеся свободными выводы этих элементов соединены над ней. Вклеенные в крышку корпуса держатель аккумулятора и светодиоды соединены с платой гибкими изолированными монтажными проводами.

Рис. 3. Чертёж печатной платы зарядного устройства

В правильно собранном устройстве необходимо лишь отрегулировать ток зарядки аккумулятора и напряжение отключения зарядки. Перед установкой тока зарядки микросхему DA1 необходимо извлечь из панели, а к контактам X1 и X2 вместо аккумулятора подключить резистор сопротивлением 33 Ом или миниатюрную лампу накаливания МН 6,3-0,3 через мультиметр в режиме измерения постоянного тока с пределом не менее 200 мА. Подборкой резисторов R11, R12 следует установить показания мультиметра равными 150 мА. Но можно установить и другой ток зарядки, в зависимости от ёмкости аккумулятора.

Регулировка напряжения отключения зарядки аккумулятора сводится к установке подстроечным резистором R14 напряжения 1,38 В между гнёздами 2 и 4 панели компаратора. После этого нужно отключить устройство от источника питания и вставить микросхему в панель. Зарядное устройство готово к работе.

Ширина петли гистерезиса триггера на компараторе DA1.2 зависит от отношения сопротивления резисторов R15 и R16. Уменьшение сопротивления резистора R15 увеличивает напряжение включения триггера.

Автор: Г. Косолапов, г. Кирово-Чепецк Кировской обл.

Аккумуляторы не для всех ! NiZn

  • Цена: US $10.05 покупались по $ 5.88
  • Перейти в магазин

Обзор специфических аккумуляторов NiZn.
забегая вперед — пользоваться можно, но осторожно =)

Что же это за чудо такое:
Никель-цинковый аккумулятор — это химический источник тока, в котором анодом является цинк, электролитом — гидроксид калия с добавкой гидроксида лития, а катодом — оксид никеля. Часто сокращается аббревиатурой NiZn. Во общем это новое — хорошо забытое старое изобретенное когда то Эдисоном.
Достоинства: большое рабочее напряжение (1,6 В; наибольшее из щёлочных аккумуляторов)
Недостатки: небольшой ресурс (250—370 циклов заряд-разряд).

Внешний вид и заявленные характеристики:
Размеры:
Диаметр максимальный:14.5mm.
Высота максимальная:50.5mm.
Вес:25 грамм.




Проблем с установкой вместо батареек АА не обнаружено.
Емкость:
Типовая:2500мВтч. Примерно соответствует 1600-1700мАч (реальных).
Минимальная:2250мВтч.
Почему указывают емкость мВтч а не мАч? Единственное объяснение, которое я нашел: из-за более низких параметров мАч при той же энергоёмкости (напряжение-то выше) на этих элементах отказались от измерения в мАч и пишут ёмкость в мВтч, что в принципе не противоречит.
Номинальное напряжение:1.6 В.
В интернете встречалось упоминание о хорошей работе при низких температурах, но мной не проверялось.
Зарядка:
Поддерживается быстрая зарядка: током от 0.5C до 1C до достижения напряжения 1.9 В на элемент.
Внутреннее сопротивление при напряжении 1 В ≦20мОм (это круто).

Производитель купленных мной элементов имеет свой сайт, о котором я к своему стыду узнал только тогда, когда начал писать обзор и прочитал надпись на элементе =) описание элемента NiZn типоразмера АА

Где я применял:
Выгодны для использования в цифровых фотоаппаратах (на NiMh фотоаппарат отключается при не до конца разряженных батарейках — фотоаппарат рассчитан на щелочные батарейки с напряжением 1,5 В, а NiZn имеет высокое напряжение и в конце разряда.) Как раз история из википедии про мой случай. Мой фотоаппарат canon powershot sx150 is ругался на низкое напряжение питания буквально после 5-6 десятков фотографий, хотя вспышка заряжалась по прежнему очень быстро. Проверка аккумуляторов на зарядном устройстве показывала что емкость остаточная была не меньше 50%! Так же на мой взгляд хорошо зарекомендовали себя в электрифицированных игрушках. Разница с другими типами аккумуляторов очевидна, игрушки более подвижны за счет большего напряжения. А в случае когда элементов всего два, то и вообще говорить не приходится, у р/у машинок дальность связи и подвижность отличается очень существенно! Положительный опыт использования в автоматическом тонометре (омрон М3). Накачка шины происходит оперативнее. Так же замечено успешное применение в фонариках.
Во общем сфера применения достаточно разнообразна.

Отличие от NiCd и NiMh более менее достоверный график:

Где синим указана кривая для цинковых аккумуляторов.
Смысл графика в более высоком рабочем напряжении. Разряд производится до напряжения 1.3 В.
Ах да, любители природы будут в восторге, NiZn аккумуляторы безвредны относительно NiCd, за это им плюс в «репу».

Год пользования:
Покупал в июне 2014 года на пробу. У продавца разные варианты, но я выбрал 4 штуки целенаправленно — по 2 комплекта для фотоаппарата. С аккумуляторами идет бокс на 4 штуки АА элементов, он же подходит и для ААА элементов, просто их надо располагать поперек. Удобная коробочка.
Использовал парами, заряженный комплект всегда был в сумке для оперативной замены. Элементы тупо помечены маркером 1 и 2 полоски соответственно, дабы не перепутать при замене.
Как заряжал в первое время:
Зарядное устройство Imax B6 в режиме NiCd, выставлял ограничение по току 1800мА и использовал (не всегда) датчик температуры. При быстрой зарядке датчик температуры очень хорошо фиксирует окончание заряда. Впрочем и дельта пик ловится неплохо.
Поскольку позже фотоаппарат начала усиленно эксплуатировать старшая дочь, то пришлось покупать отдельную зарядку, заряжать имаксом я не стал доверять, а заряжать самому не всегда было возможно, да и пусть в конце концов самостоятельная будет =).
Для этого была куплена простая зарядка питаемая от USB порта
Зарядка позиционируется для NiMh с напряжением до 1.4 В, но мне повезло — замеры показали ток 190мА и напряжение макс 2В на элемент — то, что нужно. Ставили на зарядку примерно на 10-11 часов. Используя вместо таймера обычный будильник, либо программу будильник на компьютере.

Читайте также:  Какой провод использовать под грунтом?

За год с лишним аккумуляторы отработали не менее 150 циклов. Остаточная емкость была примерно 1100 мАч (1700мВтч). Дальнейшая судьба печальна, аккумуляторы отправились в мир иной. То, что не сделала старшая дочь, довершила младшая =(
Причина банальна: фотоаппарат был разбит и аккумуляторы оказались не у дел. Позже при отъезде на несколько дней аккумуляторы были упакованы в этого колобка — убийцу аккумуляторов:

Просто напросто забыли выключить питание. В таком состоянии аккумуляторы пробыли около 2х недель и разрядились в ноль.

Попытка реанимировать оказалась неудачной:

Заряжается с отсечкой по дельа пик (я сначала обрадовался, но не тут то было)

После колобка напряжение было 0 В на всех элементах. Попытка прокачки на интеллектуальном зарядном устройстве положительного эффекта не дала. Высокое внутреннее сопротивление и малая емкость — это все что мне осталось констатировать. Аккумуляторы пойдут на утилизацию.

Высокое напряжение — конек NiZn аккумуляторов, но это не всегда хорошо, вы должны быть уверены что ваше устройство (как правило электроника) будет адекватно функционировать. Опять же требуется отдельное зарядное устройство для NiZn элементов, либо универсальное, поддерживающее NiZn. В противном случае вы разочаруетесь в этих аккумуляторах, которые не смогут раскрыть свой потенциал полностью. На данный момент для меня никелевые аккумуляторы скорее всего пройденный этап, переходим на литий.

ПРИСТАВКИ ДЛЯ РЕГЕНЕРАЦИИ ГАЛЬВАНИЧЕСКИХ ЭЛЕМЕНТОВ И БАТАРЕЙ

В настоящее время установлено, что срок службы марганцево-цинковых элементов и батарей можно значительно увеличить, если их подзаряжать током асимметричной формы, показанной, например, на рис. 84. Хорошие в этом смысле результаты достигаются при использовании для восстановления (регенерации) элементов тока промышленной частоты. При этом выявлена тенденция усиления эффекта регенерации с увеличением отношения !т и Imp амплитуд зарядного 1тз и разрядного 1тр импульсов тока, а также с увеличением отношения tp / t 3 длительностей этих импульсов тока [17].

Так, при постоянном соотношении амплитуд Im 3 / I тр = 1,5 увеличение отношения у от 1 до 1,5 улучшает работоспособность регенерируемых элементов примерно на 15 %. В то же время при постоянном значении tp / t 3 увеличение отношения Im 3 / I тр с 1,5 до 3 также усиливает эффект регенерации на 15 %.

Марганцево-цинковые элементы сравнительно мало критичны к величине постоянной составляющей и форме импульсов тока, используемых для регенерации. Это обстоятельство позволяет использовать сравнительно простые зарядные устройства без регулировки постоянной и переменной составляющих зарядного тока. Прежде чем перейти к описанию простых приставок для регенерации гальванических элементов отметим, что не все элементы хорошо регенерируются. Лучше других поддаются регенерации стаканчиковые марганцево-цинковые элементы,- такие как 336, 373, 3336 и им подобные. Для эффективной многократной регенерации необходимо, чтобы цинковый стаканчик элемента не имел механических повреждений, возникших в результате взаимодействия с электролитом. Элемент не должен быть разряжен до напряжения ниже 0,7 В. Установлено также, что лучше регенерируются элементы с меньшим сроком хранения. Так, снижение емкости батарей с трехмесячным сроком хранения после 10 циклов регенерации составляет всего 12 %, а элементов с двухлетним сроком хранения — 19 %. Лучше всего регенерируются элементы, которые разряжались большим током. Галетные батареи типа «Крона» плохо поддаются регенерации.

При регенерации элемент рекомендуется заряжать примерно до 2 В. Электрическая емкость, затраченная на регенерацию элементов, должна составлять 120 % от емкости элемента, израсходованной им в предыдущем цикле. Время заряда 16 — 20 ч.

На рис. 85, а приведена практическая схема приставки, предназначенной для регенерации различных элементов, и батарей, состоящих из последовательно соединенных однотипных элементов с общим напряжением до 9 В. Здесь в цепи заряда установлены параллельно включенные резистор R 1 и диод Д1. Полярность включения диода Д1 обеспечивает асимметрию формы тока, соответствующую показанной на рис. 84. Миллиамперметр ИП1 со шкалой 400 мА измеряет постоянную составляющую зарядного тока. По мере регенерации, вследствие увеличения ЭДС батареи или элемента, сила зарядного тока уменьшается. По уменьшению зарядного тока можно судить о ходе процесса регенерации и его окончании.

Для регенерации различного числа однотипных элементов, соединенных последовательно (до шести), вторичная обмотка трансформатора Tpl выполнена с отводами. Установкой переключателя В2 в различные положения со второй обмотки II трансформатора Tpl можно получать напряжения в 2, 4, 6, 8, 10, 12 и 14 В. Конструктивные данные трансформатора Tpl следующие; сердечник Ш22, набор 44 мм . Секция la первичной обмотки содержит 600 витков провода ПЭЛ-1 0,3 S , а секция 16 — 440 витков провода ПЭЛ-1 0,25. Вторичную обмотку II выполняют 66 витками провода ПЭЛ-1 0,62 с отводами от 10-го, 19-го, 28-го, 38-го, 47-го и 57-го витков.

По предложению И. Алимова [2] в приставке резистор R 1 можно заменить электролитическим конденсатором емкостью 10 — 15 мкФ (схема и полярность включения конденсатора указаны на рис. 85, а пунктирной линией). Рабочее напряжение конденсатора должно быть 20 — 25 В.

Рис. 85. Схема приставки для регенерации гальванических элементов и батарей:

а — схема на одном дкоде с шунтирующим резистором или конденсатором; б — на двух диодах и резисторах

Значения постоянной составляющей зарядного тока, рекомендуемые отдельными авторами для различных элементов, колеблются в достаточно широких пределах: от 200 до 400 мА для элементов типа 373 и от 30 до 60 мА для элементов типов 312 и 316. Для батарей типа 3336 эти значения составляют 35 — 120 мА. Указанные значения зарядных токов, фиксируемые прибором ИП1, следует рассматривать как ориентировочные, поскольку разработка методики регенерации батарей и элементов далеко не закончена.

На рис. 85, б регенерируемый источник питания включается в цепь заряда последовательно с двумя параллельными цепочками Д1, R 1 и Д2, R 2. Ток требуемой асимметричной формы в цепи заряда источника питания обеспечивается подбором резисторов R 1 и R 2.

При эксплуатации рассмотренных приставок следует учитывать следующее. Переключатель В2 устанавливают в такое положение, чтобы с вторичной обмотки трансформатора снималось напряжение, превышающее номинальное напряжение заряжаемого источника (элемента, батареи) на 30 — 50 %. Об окончании регенерации судят по значительному уменьшению зарядного тока, либо по увеличению напряжения на каждом элементе до 2 — 2,1 В. Время заряда, как указывалось выше, должно быть достаточно большим (16 — 20 ч). По окончании регенерации сначала отключают батарею, а затем приставку. В противном случае регенерируемый источник питания будет разряжаться через вторичную обмотку Tpl . В этом отношении выгодно отличается приставка с шунтирующим конденсатором, где ток разряда крайне мал.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector