Антифриз может способствовать снижению стоимости получения солнечной электроэнергии

Варианты использования солнечных батарей для экономии Ваших средств

Можно ли сэкономить при помощи солнечных батарей?
Этот вопрос мы слышим каждый день от наших клиентов и отвечали на него сотни раз.

Конечно, в каждом конкретном случае, у Вас дома, в квартире или на даче, в небольшой компании или на крупном производстве, ответ всегда индивидуален и зависит от многих факторов (тип электростанции, регион эксплуатации, сезонность эксплуатации, есть ли подключение к сети 220/380 Вольт, тип электрооборудования, наличие незатеняемого места для установки панелей и т.д.). Тем не менее, есть несколько основных вариантов применения солнечной энергии в быту и на производстве, которые мы рассмотрим и постараемся охватить большую часть Ваших вопросов.

Для получения электричества от Солнца применяются следующие 4 типа электростанций:

  • резервная,
  • автономная,
  • гибридная,
  • сетевая.

Резервная электростанция

При применении этого типа, речи об экономии не идет, т.к. подразумевается, что есть подключение к сети 220 Вольт, но бывают отключения электричества.

Этот тип используется только при отключении света на время от нескольких часов до 2-3 дней. На время, когда отключили электричество, самые нужные электроприборы (холодильник, освещение и т.п.) подключаются к инвертору, который берет энергию от аккумуляторов и солнечных батарей небольшой мощности (200-300 Вт).

Комплектация и стоимость резервной системы минимальна, но т.к. используется эта система не постоянно, то электроэнергия от нее получается достаточно дорогой. Но резервные системы и не устанавливают для экономии, т.к. их предназначение совсем другое — обеспечить самые важные электроприборы в доме или на даче электричеством, когда оно внезапно исчезло в розетке.

Автономная электростанция

При сроке полной окупаемости оборудования 20 лет, “стоимость электроэнергии” от автономной солнечной электростанции составит от 8 до 20 рублей за кВт*час в зависимости от комплектации системы и региона эксплуатации (если разделить стоимость оборудования на кол-во энергии, которое будет выработано за 20 лет). То есть, при текущей цене электроэнергии 4 руб./кВт*час, речи об экономии также не идет.

Этот тип электростанции используется там, где нет подключения к сети и если сравнивать её с бензо- или дизель-генератором, то применение автономной солнечной электростанции выгоднее примерно в 2 раза. Кроме того, она абсолютно бесшумна и не требует постоянного подвоза топлива, заправки и частого техобслуживания.

При этом нужно отметить, что в широтах России зимой получать электроэнергию только от Солнца очень дорого по причине малого количества солнечных дней. Поэтому, при необходимости круглогодичной эксплуатации, система обязательно дополняется бензогенератором, который периодически используется при длительном отсутствии Солнца.

Гибридная электростанция

Гибридная солнечная электростанция — это та же автономная, но с постоянным подключением к сети 220 Вольт.

Гибридная электростанция работает следующим образом: при наличии энергии от солнечных батарей, эта энергия используется в первую очередь, а при ее недостатке используется сеть. При такой работе, аккумуляторы, входящие в состав оборудования, используются не постоянно, что значительно увеличивает их срок службы по сравнению с автономной системой, в которой их нужно будет менять один раз в 3-5 лет.

При сроке полной окупаемости оборудования 20 лет, “стоимость электроэнергии” от гибридной солнечной электростанции составит от 6 до 15 рублей за кВт*час в зависимости от комплектации системы и региона эксплуатации. То есть, при постоянном росте тарифов, уже очень скоро в регионах с большим количеством солнечных дней будет выгодно применять данный тип электростанций.

Кроме того, используя гибридную электростанцию, Вы не только сэкономите в будущем, но и при отключении света (сети), не останетесь без электричества.

Сетевая электростанция

При сроке полной окупаемости оборудования 20 лет, “стоимость электроэнергии” от сетевой солнечной электростанции составит от 4 до 8 рублей за кВт*час в зависимости от комплектации системы и региона эксплуатации. То есть, при текущей цене электроэнергии 4 руб./кВт*час и при введении повышенных тарифов за электроэнергию сверх социальной нормы, Вы начинаете экономить уже сегодня!

Сетевая солнечная электростанция состоит всего из двух основных компонентов: сетевой инвертор и панели необходимой мощности (обычно от 500 Вт до 5 кВт).

Особенностью этого типа является то, что для работы обязательно необходимо наличие сетевого электричества, а также то, что электроэнергия вырабатывается только в светлое время суток. При отключении электричества, сетевой инвертор также отключается, т.е. Вы не сможете использовать энергию от солнечных батарей в случае, если у Вас отключат свет.

Этот тип электростанции не обеспечивает резерв и применяется только для экономии на оплате электроэнергии или для получения дополнительной мощности при подключении к сети с ограничением по мощности.

Все промышленные солнечные электростанции являются сетевыми.

Примечание: расчет стоимости электроэнергии приведен в ценах 2013 года. В расчет необходимо вносить корректировку исходя из отношения обменного курса рубля на сегодняшний день к 2013-у году..

Солнечные коллекторы и водонагреватели

Для получения тепловой энергии от Солнца применяются солнечные водонагреватели. Трубчатые вакуумные коллекторы, входящие в состав систем нагрева воды, имеют КПД 60-70%, что примерно в 4 раза превышает КПД солнечных батарей. Кроме того, самые простые модели солнечных водонагревателей представляют из себя моноблок и достаточно дёшевы.

По этим причинам, использование солнечных водонагревателей позволяет значительно сэкономить на оплате тепловой энергии уже сейчас и типичный срок их полной окупаемости составляет около 5 лет.

Надеемся, приведенная информация поможет Вам сделать выбор!

Стоимость электроэнергии от солнечных батарей.

Инвестиции в солнечную электростанцию, как все правильно посчитать.

Данная статья посвящена расчету себестоимости электроэнергии, производимой солнечными батареями. Приведённые в статье расчеты не претендуют на абсолютную точность, это скорее, попытка перевести модные сейчас слова «энергоэффективность», «бесплатная солнечная энергия» в некие цифры, дающие представление о реальной стоимости солнечной энергии.

За точку отсчета мы взяли некую «усредненную» солнечную панель, наиболее часто используемую в домашних солнечных установках. Обычно это фотоэлектрический модуль мощностью 250Вт, чаще поликристаллический, чем монокристаллический (что, впрочем, не так существенно для расчетов), стоимостью близкий к нижнему ценовому диапазону на данное оборудование в Украине, примерно 1 доллар за Вт, или 250$ за панель. Естественно, встречаются как более дешевые варианты, так и значительно более дорогие, при желании все можно пересчитать самостоятельно, основываясь на данном примере.

Итак, в наших расчетах солнечная панель имеет определенную мощность при определенных условиях, которая подвержена изменению со временем (деградация материалов); обычно производитель указывает номинальную мощность, и дает на её изменение определенную гарантию. Чаще всего, это десятилетняя гарантия 90% мощности и двадцатилетняя гарантия 80% мощности. Если обобщить эти все изменения, солнечная батарея после первого года эксплуатации теряет в мощности примерно 3%, и далее каждый год по 0,7%. Ниже диаграммы и графики от разных производителей, иллюстрирующие уменьшение мощности солнечных панелей.

Используя значение мощности и её постепенное уменьшение, посчитаем электроэнергию, которую произведет наша солнечная батарея за условный отрезок времени, скажем, двадцать лет. Тут небольшое пояснение – данный временной отрезок принят, исходя из информации европейских компаний о максимальном периоде эксплуатации их клиентами солнечных установок до модернизации; в нашей стране немного другая картина – считанные частные солнечные установки эксплуатируются больше семи – восьми лет. Вместе с тем, двадцать пять лет, по истечении которых производители дают гарантию на 80% мощности – не предел эксплуатации солнечных батарей. Есть примеры успешной работы солнечных панелей, установленных 30 и более лет назад, опять же, не в Украине.

Итак, прогнозируемый расчет производительности нашей панели в автокалькуляторе по Киеву дает цифру 275кВт*ч электроэнергии в год на выходе, но не панели, а на выходе фотоэлектрической системы, связанной с сетью, то есть, системы для прямого преобразования солнечной энергии в сетевую электрическую. Нам это как раз и важно, какая энергия будет на выходе установки, а не то, что дает сама панель. При этом в автокалькуляторе учитывается и оптимальный угол установки солнечной батареи, и потери энергии, как в самой солнечной батарее – температурные потери, потери на отражение, так и системные потери – из-за не согласованности параметров, в кабеле, в инверторе, прочее.

Теперь масштабируем на выбранный период работы солнечной батареи (двадцать лет) её производительность энергии, с учетом ухудшения параметров; первый год работы посчитан, исходя из потери мощности в 3%, остальные – 0,7%. Для наглядности все сведено в таблицу.

Читайте также:  Rgb-ночник управляемый руками
Год1234567891011121314151617181920Σ
2752662642622602582562542522502482462442422402382362342322302282940

Далее простая арифметика: за двадцать лет солнечная панель стоимостью 250$ произведет 2940кВт*ч электроэнергии, соответственно, стоимость этой энергии –

250$ / 2940 кВт*ч = 0,09$/кВт*ч

В целом это не полная картина по реальной стоимости кВт/ч, так как солнечные батареи – хоть и главный, но не единственный элемент системы для преобразования энергии солнечного излучения в электрическую. В полный комплект фотоэлектрической сетевой системы входят так же солнечный инвертор, автоматика защиты по постоянному и переменному току (иногда она встроена в инвертор), система креплений, кабельно-проводниковые соединения, и прочие элементы. В процентном соотношении панели занимают примерно 60-65% от полной стоимости такой системы, в зависимости от мощности (напоминаем, рассматриваем только домашние солнечные установки), производителей преобразовывающего оборудования, материала креплений, и так далее.

Таким образом, условная стоимость системы с нашей солнечной панелью 250Вт будет составлять:

250$ / 65% х 100 = 385$ или 250$ / 60% х 100 = 417$

Рассчитываем теперь полную стоимость электроэнергии на выходе системы:

385 $ / 2940 кВт*ч = 0,13 $/кВт* или 417$ / 2940 кВт*ч = 0,14 $/кВт*ч

Итого, стоимость электроэнергии от домашней солнечной сетевой установки составляет примерно 0,13-0,14 $/кВт*ч. Это при условии, что установка работает безаварийно в течении 20 лет. На практике такое вполне достижимо, так как базовая гарантия на инверторы европейского производства, а так же некоторые китайские, составляет 5 лет. Конструкция, автоматика прослужат не меньше. Если же учесть дополнительные затраты, например, периодическую очистку панелей, продление гарантии на инверторы, регламентные работы, то себестоимость солнечной энергии в таких системах будет на уровне 0,15 $/кВт*ч.

Итак, основную задачу мы решили. Но это еще не все. В последнее время достаточно часто слышу от людей, что, мол, электроэнергия постоянно дорожает, думаем поставить солнечную установку, отключиться от сети, никому не платить. Что ж, попытаемся ответить еще на этот вопрос – сколько стоит энергия от домашней солнечной установки, предназначенной для резервного/сезонного автономного электроснабжения. Подчеркиваю, резервного, или сезонного автономного электроснабжения, а не полностью автономная система, так как для автономных установок расчет будет выглядеть совсем по-другому (там уже необходимо учитывать работу ветрогенератора, дизель-генератора).

В домашних солнечных установках, предназначенных для резервного электроснабжения, солнечные батареи занимают различное соотношение от общей стоимости системы; можно с большой долей вероятности утверждать, что это примерно 25%.

Но данная цифра очень усредненная, так как реальное процентное соотношение стоимости панелей и всей системы зависит от массы дополнительных данных. Например, в системах с недорогим преобразовывающим оборудованием стоимость солнечных батарей достигает почти 30%, а с премиумным оборудованием и высоко ресурсными аккумуляторами – порядка 20%. Кроме того, есть зависимость соотношения стоимости панелей и от необходимого выхода электроэнергии. Поэтому пока остановимся на очевидном усреднении финансовой доли солнечных батарей в установках для резервного электроснабжения – 25%.

Далее, в солнечных установках для резервного электроснабжения есть компоненты, срок службы которых намного ниже расчетного периода работы солнечных панелей, это аккумуляторные батареи. Количество отработавших комплектов за расчетный период в 20 лет составит не менее 3-ех (справедливо для аккумуляторах батарей с высоким ресурсом), а примерная доля комплекта аккумуляторных батарей в общей стоимости системы – 40%. Таким образом, базовая стоимость солнечных установок для резервного электроснабжения будет увеличиваться на 40% за период 20 лет не менее 2-ух раз.

Еще одна переменная, влияющая на расчет стоимости энергии от солнечной установки для резервного электроснабжения– более высокие потери энергии в цикле её преобразования от солнечной панели до конечного потребителя. Обобщенно можно сказать, что в солнечной установке для резервного электроснабжения дополнительно теряется не менее 15% энергии.

Приняв во внимание все выше перечисленные факторы, получаем следующий расчет полной стоимости системы с нашей усредненной панелью за 20 лет эксплуатации:

(250$ / 25% х 100) + (2 х 40%) = 1800$

Примерный выход энергии от такой системы, с учетом более высоких потерь:

2940кВт*ч – 15% = 2500кВт*ч

Таким образом, стоимость энергии от нашей установки для резервного электроснабжения, с учетом полного срока эксплуатации – 20 лет, составляет:

1800$ / 2500 кВт*ч = 0,72$/кВт*ч

Учитывая потребности в обслуживании такой системы, в регламентных и ремонтных работах, стоимость энергии от нее за 20 лет эксплуатации составит порядка 0,75$/кВт*ч.

Из данных расчетов можно сделать несколько выводов. Первый, лежащий на поверхности – солнечная энергия совершенно не бесплатна. Второй – самое оправданное использование солнечных батарей – для компенсации, замещения сетевой электроэнергии, при её стоимости, близкой к стоимости энергии от солнечных батарей. Либо же, что еще выгоднее, продажа солнечной энергии по более высокому, «зеленому» тарифу. Кстати, последняя схема в Украине с успехом работает, несмотря на все экономические сложности. Домохозяйства, установившие солнечные панели и получившие «зеленый» тариф, не только экономят электроэнергию, потребляемую от сети, но и получают выплаты по высокому тарифу за всю не использованную ими солнечную энергию.

Еще один вывод, касающийся стоимости солнечной энергии – получение её от солнечных установок для резервного/сезонного автономного электроснабжения, с учетом периодической замены аккумуляторов в таких системах, довольно дорого, и использование данных систем в каждом конкретном случае надо хорошо просчитывать. Тут есть масса нюансов, позволяющих добиться снижения стоимости, в целом это достойно темы отдельного разговора.

А о новой тенденции в направлении оптимизации использования солнечной энергии в домашних системах питания я обязательно упомяну. Речь идет о комбинированных солнечных установках для хранения и собственного потребления энергии, имеющих функции как прямого преобразования солнечной энергии в сетевую электрическую, так и резервного/автономного электроснабжения выделенных групп. В данных системах, благодаря специфике компоновки и применяемого оборудования (гибридного инвертора), лучше соотношение стоимости различных компонентов. Солнечные батареи занимают примерно 40% от общей стоимости оборудования, а аккумуляторы – в районе 20%, так как нет необходимости использовать очень емки и высокоресурсные батареи. Кроме того, системные потери энергии в них так же несколько ниже, чем в установках для резервного/сезонного автономного электроснабжения. Все вместе позволяет занчительно снизить стоимость солнечной энергии, примерное значение которой можете посчитать самостоятельно, на основе выше приведенного алгоритма.

Ученые предложили технологию, которая может снизить стоимость высокоэффективных солнечных батарей

Группа ученых из Санкт-Петербурга предложила и экспериментально опробовала технологию создания высокоэффективных солнечных батарей на основе А3В5 полупроводниковых соединений на кремниевой подложке, которые в будущем могут иметь эффективность в полтора раза больше и при этом более низкую себестоимость, чем нынешние фотовольтаические преобразователи с одним каскадом.

Появление данной технологии некогда было предсказано нобелевским лауреатом Жоресом Ивановичем Алферовым. Результаты работы ученых опубликованы в журнале Solar Energy Materials and Solar Cells.

Сегодня, когда в мире сокращаются запасы источников углеводородного топлива и все больше растет обеспокоенность общественности вопросами экологии, ученые уделяют пристальное внимание развитию так называемых «зеленых технологий». Одной из самых популярных тем является развитие солнечной энергетики.
Однако более широкому использованию солнечных батарей препятствует ряд проблем. Ставшие традиционными кремниевые солнечные батареи имеют сравнительно небольшую эффективность — около 20-25%. Более эффективные технологии требуют заметно более сложных полупроводниковых соединений, что значительно повышает цену самих солнечных элементов.

Петербургские ученые предложили решение проблемы. Исследователи из Университета ИТМО, Академического университета имени Ж. И. Алферова и Физико-технического института имени А. Ф. Иоффе показали, что A3B5 структуры можно вырастить на дешевой кремниевой подложке, что позволит существенно сократить стоимость многокаскадного солнечного элемента.

«Наша работа посвящена созданию эффективных солнечных элементов на основе А3В5 на кремниевой подложке, — рассказывает Иван Мухин, сотрудник Университета ИТМО, заведующий лабораторией Академического университета, который является соавтором исследования. — Главная сложность синтеза полупроводниковых соединений на кремниевой подложке состоит в том, что полупроводник должен обладать таким же параметром кристаллический решетки, как у кремния. Грубо говоря, атомы этого материала должны находиться на таком же расстоянии друг от друга, что и атомы кремния.

К сожалению, полупроводников, отвечающих этому требованию, немного. К примеру, фосфид галлия (GaP). Однако он сам не очень подходит для создания солнечных элементов, так как плохо поглощает солнечный свет. Но вот если взять GaP и добавить азот N, мы получим раствор GaPN. Уже при малых концентрациях N данный материал становится прямозонным и хорошо поглощает свет, при этом может быть интегрирован на кремниевую подложку. Ко всему прочему кремний является не просто фундаментом, на который синтезируется фотоматериал — он сам может выступать одним из фотоактивных слоев солнечного элемента, поглощающим свет в ИК-диапазоне. Одним из первых идея совмещения A3B5 структур и кремния была озвучена Жоресом Ивановичем Алферовым».

Читайте также:  Управление биполярным шаговым двигателем без использования драйвера

В лаборатории ученым удалось получить верхний слой солнечной батареи, интегрированный на кремниевую подложку. Если таких фотоактивных слоев будет больше, то и эффективность солнечной батареи станет существенно выше, так как каждый слой солнечной батареи будет эффективно поглощать свою часть солнечного спектра.
Пока в лаборатории был создан первый небольшой прототип солнечной батареи на основе элементов А3В5 на кремниевой подложке. Сейчас перед учеными стоит задача создать солнечный элемент, имеющий в своем составе несколько фотоактивных слоев. Такие солнечные батареи заметно эффективнее поглощают солнечный свет и генерируют электрическую энергию.

«Мы научились растить самый верхний слой. Эта система материалов потенциально может быть использована и для промежуточных слоев. Если добавить мышьяк As, то получится GaPNAs — из него на кремниевой подложке можно вырастить несколько каскадов, работающих в разных частях солнечного спектра. Как показали наши предыдущие работы, потенциально эффективность таких солнечных батарей может превышать 40% при концентрации света, то есть быть в 1,5 раза выше, нежели в современных Si технологиях», — заключает Иван Мухин.

Насколько подешевеет солнечная энергия


Стоимость установленных распределенных фотоэлектрических систем, за ватт

Стоимость солнечных панелей в США стремительно снижается на протяжении более 15 лет. Специалисты задаются вопросом: как долго будет продолжаться такое снижение цены и до какого уровня она дойдет? Применим ли к фотоэлектрическим системам (PV) своеобразный закон Мура? Этой теме посвящен отчет “Tracking the Sun” Национальной лаборатории Лоренса Беркли с анализом цен на солнечные панели в США.

Стоимость небольших фотоэлектрических систем (менее 500 кВт) для нежилых помещений в 2014 году снизилась на $0,40 за ватт, а стоимость более мощных систем от 500 кВт снизилась на $0,70 за ватт. Таким образом, уже пятый год подряд отмечается существенное снижение цен на солнечные батареи с установкой. И процесс продолжается: в первом полугодии текущего года цены упали еще на $0,20-0,50/Вт, то есть на 6-13%.

Постоянное снижение цен на фотоэлектрические системы особенно примечательно на фоне относительно стабильной цены на сами PV-модули. Она почти не менялась с 2012 года, отмечают авторы отчета. На американском рынке цена панелей падает за счет снижения сопутствующих расходов на установку, снижения цен на другие комплектующие (инвертер, стекло, алюминий, провода и проч.) более эффективного дизайна систем, стоимости получения разрешений и инспекций, удешевлению труда рабочих, а также благодаря усилиям компаний по маркетингу и захвату рынка.

В итоге, серьезно снижается стоимость «солнечного электричества», которое вырабатывается на коммерческих солнечных электростанциях. На следующем графике показана стоимость контрактов, подписанных с операторами таких электростанций с 2007 по 2015 годы. Диаметр окружности соответствует выдаваемой мощности электростанции. Красным цветом отмечены контракты, по которым еще не началась поставка электричества в сеть.

Как видим, за последние 7-8 лет стоимость упала с $200 за МВТч (то есть 20 центов за кВтч) почти до $40 за МВТч (4 цента за кВтч). Цифры взяты из отчета Национальной лаборатории Лоренса Беркли “Is $50/MWh Solar for Real?”

Особенно четко падение цен прослеживается, если вывести зависимость не по времени, а по совокупной мощности уже установленных панелей, то есть введенный в строй электростанций. Здесь видно, что падение цен происходит очень стабильно: на каждое удвоение общей мощности цена установки новых панелей снижается на 16%.

Это вполне естественный эффект: цены на любой продукт должны снижаться при увеличении объемов продаж.

Аналитики обращают внимание на сильный разброс цен в США. Так, 20% самых дешевых PV-систем для жилых домов были установлены по цене менее $3,50/Вт, а 20% самых дорогих — по дороже $5,30/Вт. Разница в цене объясняется рядом факторов: системный дизайн, подбор компонентов, рыночные условия, особенности регионального регулирования и т. д.

Отчет “Tracking the Sun” основан на информации, собранной с более чем 400 000 фотоэлектрических систем, установленных на жилых и нежилых помещениях с 1998 по 2014 годы в 42 штатах. Это более 80% всех PV-систем, установленных в стране за данный период.

До какого же уровня будут падать цены на солнечную энергию? Если «закон Мура» здесь сохранит свою силу, то к 2020 или 2021 году совокупная мощность всех солнечных электростанций в мире достигнет 600 ГВт, а стоимость электроэнергии без субсидий опустится до 4,5 центов за кВтч для самых солнечных территорий (юг США, Австралия, Ближний Восток и др.) и до 6,5 центов за кВтч для умеренно солнечных территорий (Центральная Европа, большая часть территории США).

И это еще не предел, считают приверженцы солнечной энергетики. Когда объемы генерации удвоятся еще четыре раза, то солнечная энергия обеспечит 16% мировых потребностей в энергии. В этом случае стоимость упадет до 3-4,5 центов за кВтч. Это в два с лишним раза дешевле, чем стоимость электричества с электростанций на угле или природном газе.

Гибкое Солнце

Неудивительно, что энергетики уже подписывают договоры об электроснабжении, в которых “солнечные” киловатты даже дешевле, чем “газовые”. К примеру, в Техасе одна из энергокомпаний подписала 20-летний контракт на поставку электричества от солнечной станции по цене ниже 5 центов за киловатт-час. Напомним, что президент Барак Обама поставил цель добиться к 2020 году повышения доли альтернативной энергетики до 25 процентов. Такие же амбициозные планы и в Европе: 25 процентов к 2020 году, 40 процентов к 2040 году.

– Действительно, стоимость солнечных фотоэлектрических преобразователей падает фантастически быстро, – говорит председатель Научного совета РАН по нетрадиционным возобновляемым источникам энергии, доктор технических наук Олег Попель. – Неудивительно, что мир уже близок к паритету между альтернативными и традиционными источниками энергии. Но, конечно, важно учитывать специфику каждого из них. Ведь обычные электростанции не зависят от климата, от погоды, а работа альтернативных станций связана с природными условиями местности, где они установлены. Скажем, в Техасе очень большое количество солнечных дней, поэтому использование энергии светила здесь вполне рентабельно.

Что обеспечило альтернативному источнику совершить такой прорыв? Существенно снизить цену энергии? По мнению ученых, причина прежде всего в новых материалах, композитах. Они позволили поднять не только кпд солнечных батарей, но и снизить их стоимость. Один из таких композитов сейчас создается в лаборатории НИТУ “МИСиС” под руководством приглашенного профессора из Университета Техаса Анвара Захидова. По оценкам разработчиков, он будет стоить в три раза дешевле лучших аналогов из кремния. А при массовом производстве разница станет 4-6-кратной. Это сулит настоящий прорыв в солнечной энергетике.

Правда, у солнечного ватта есть один серьезный минус. Само получение кремния, из которого изготавливаются солнечные батареи, токсично, дорого, требует много энергии. Более того, ими неудобно пользоваться: они жесткие, тяжелые и хрупкие, для установки нужны специальные “прибамбасы”. Словом, много возни. Совсем другое дело – батарея гибкая. Ее можно раскатать как рулон на любой изогнутой поверхности. Что сразу расширяет сферы применения. Именно такие солнечные элементы впервые в России созданы учеными МИСиС.

– В них вообще нет кремния, что и позволило придать батарее гибкость, – объясняет сотрудник лаборатории Данила Саранин. – Это тандем из материала перовскит и полупроводниковых полимеров. В отличие от дорогого кремния перовскит стоит копейки. Но главное преимущество такого тандема даже не в этом. Технология изготовления батареи из кремния очень сложна, требуется глубокий вакуум и дорогостоящее оборудование. А наш метод намного проще и дешевле. Фактически солнечные элементы можно печатать на простых устройствах.

Старт перовскитной электронике дали японцы, которые впервые создали солнечный тандем с кпд 3,9 процента. В мире сразу же оценили перспективы, в гонку включилось множество ведущих зарубежных лабораторий, и сейчас кпд уже достиг 21,3 процента. Но если для кремния эта цифра почти близка к пределу его возможностей, преодолеть который не позволяют законы физики, то солнечный тандем способен на большее. Дело в том, что кремний собирает только небольшую часть видимого солнечного спектра, а тандем практически весь. Здесь и лежат перспективы роста.

– Кроме того, мы намерены еще повысить кпд благодаря своему другому ноу-хау, – говорит Саранин. – Если совсем просто, то суть в следующем. Наш элемент состоит из восьми слоев, то есть похож на сэндвич. Зачем столько? Свет не сразу превращается в электрический ток, для этого ему требуется пройти несколько каскадов. Так вот наши конкуренты соединяют все эти слои последовательно, плюс к минусу. Мы предложили иной вариант – соединять параллельно, что позволяет существенно поднять кпд.

Читайте также:  Подключение звуковой карты к телефону

Сейчас ученые тестируют полученный элемент, а уже в будущем году намерены приступить к его промышленным испытаниям.

Наступление композитов идет широким фронтом. Например, американскими учеными из Принстонского университета создали материал, который увеличивает кпд солнечной батареи в 1,5 раза по сравнению с кремнием. Речь идет о трехслойной наноструктуре из металлопластика, золотой наносетки, титана и алюминия. По словам разработчиков, такая ловушка является для света своеобразной “черной дырой”, откуда нет выхода. В перспективе исследователи планируют выпускать материал кусками размером с лист обойной бумаги, используя технологию “нанопечати”.

Нанокомпозиты позволили устранить еще один серьезный минус солнечной батареи. Дело в том, что она статична, а Солнце постоянно движется. Поэтому в течение дня меняется количество падающей на батарею солнечной энергии. Чтобы поддерживать нужный угол, приходится идти на разные ухищрения, поворачивать панели с помощью сложной и дорогой техники. А ведь природа давно решила эту проблему. Например, подсолнухи постоянно в “упор” смотрят на светило, отслеживая его движение.

Ученые Университета штата Висконсин решили повторить природу. Они разработали нанокомпозит, способный скручиваться и двигаться при нагреве солнечными лучами. Основу композита составляют жидкокристаллические эластомеры (LCE). При попадании на них солнечного света они начинают “скручиваться”, а оказавшись в тени, возвращаются в исходное состояние. В самих этих эластомерах ничего сверхнового нет, но ученым удалось намного повысить их чувствительность, добавив углеродные нанотрубки. Эта конструкция вращается вокруг оси подобно подсолнуху, постоянно направляя панель прямо на Солнце. В результате из него удается извлечь намного больше энергии по сравнению с обычной батареей.

Настоящим прорывом может стать композит, созданный учеными лабораторий Массачусетского технологического института. Дело в том, что более 50 лет назад американцы Уильям Шокли и Ганс Квиссер рассчитали абсолютный предел эффективности солнечных батарей из кремния по переработке света в электричество. Максимум составляет 32 процента. И вот ученые MIT сообщили, что им удалось превысить этот предел сразу в 2 раза. Результат, прямо скажем фантастический. Как он достигнут? Для этого солнечная батарея сделана в виде гибрида. Он состоит из обычных фотоэлементов и специального нанокомпозита, который активно поглощает тепло. Когда он нагреется до определенной температуры, то начинает уже сам испускать излучение. И здесь ученым потребовалось решить очень нетривиальную задачу. Они сумели, подбирая различные материалы, добиться, чтобы нанокомпозит испускал только такие электромагнитные волны, которые доступны для захвата фотоэлементами солнечной батареи. А дальше по традиционной схеме: свет попадает на фотоэлементы и преобразуется в электроэнергию. Так излучение Солнца используется полностью: и свет, и тепло.

Чтобы оценить масштабы нынешнего бума в солнечной энергетике, надо упомянуть о только что построенной в Калифорнии крупнейшей в мире электростанции. Она вырабатывает чистую энергию, не сжигая ни капли топлива, и обеспечивает электричеством 140 тысяч домов. Мощность станции 392 мегаватт. Это вполне сопоставимо со средней ТЭЦ. Станция Иванпа Солар расположена в пустыне Мохаве, ее строительство велось около трех лет и обошлось в 2,2 миллиарда долларов. Собирают солнечные лучи 173 тысячи панелей, размер каждой – с гаражные ворота.

Но это, как говорится, только начало. В 2020 году Калифорния намерена получать от Солнца около 33 процентов энергии. Цифра, прямо скажем, фантастическая. Кстати, ВВП штата – 2,2 триллиона долларов, что превышает ВВП большинства стран на планете. Энергии нужно очень много! И сейчас на глазах здесь происходит настоящая революция альтернативной энергетики. Иванпа Солар – только одна из 7 очень крупных солнечных электростанций, введенных в строй в Калифорнии.

Энергия солнца и ветра стала окупаться в Европе без субсидий


Голдманы в отчёте «Power Shift 2019: Nextgen Power» привели очень интересную информацию:

  • К 2030 г. прогнозируется ввод более 1000 ГВт солнечных панелей
  • За последний год солнечные панели подешевели на 20%
  • Оптовые цены на электроэнергию за год выросли на 30%
  • Нормированная стоимость солнечной электроэнергии на 40-50% дешевле цен в центральной и южной Европе.
  • Портфель проектов по солнечной энергетике в Испании вырос на 129% с мая по ноябрь 2018г и составляет 50% установленной мощности.
  • Доля возобновляемых источников энергии к 2030 году может превысить 70%

Более того, ожидается падение стоимости электроэнергии на 25% к 2030 году. Для того, чтобы текущая электроэнергетика оставалась конкурентоспособной (точнее для сохранения EBITDA на текущем уровне при падении цен), энергетикам необходимо дополнительно ввести в строй возобновляемые источники энергии, чтобы их доля составляла 10-20%.

Казалось бы, старые электростанции должны становиться неконкурентоспособными. Но именно крупные компании получают множество преимуществ на этом рынке. Во-первых, они имеют возможность подписать долгосрочные договоры со старыми клиентами на ввод солнечных электростанций. Сами клиенты тоже в этом заинтересованы, т.к. получают электроэнергию по меньшей цене. Во-вторых, крупные компании получают гораздо более привлекательные цены при покупке солнечных панелей, также намного дешевле обходится им и монтаж. В-третьих, даже смесь солнечных и ветряных станций требует резервной мощности, но старые станции (на газе или ГЭС) могут обеспечить этот резерв по гораздо меньшей цене, чем новые небольшие компании.

Самое интересное, что корпоративные договоры 2019 года позволяет компаниям, заключившим договоры о поставке мощности с солнечных электростанций, экономить 40%.

Перепроизводство солнечных панелей в Китае привело к падению стоимости солнечных панелей на 30% с начала 2018 года. При этом в 2017 году Китай устанавливал у себя половину всех солнечных панелей в мире, а падение вызвано сокращением субсидий. В Европе стоимость солнечных панелей упадёт на 35% до мирового уровня в связи с окончанием антидемпинговых мер.

Интересно, что солнечная электроэнергетика уже сейчас привлекательна не только в Испании и Италии, но и неплохо себя чувствует во Франции, Германии и даже Великобритании. А вот в Скандинавских странах пока ещё электроэнергия солнечных электростанций обходится пока дороже других альтернатив.

По состоянию на 2018 год возобновляемые источники энергии в Европе составляют более 50% от установленной мощности, хотя выпуск ими электроэнергии пока ещё не превышает 30% от общего выпуска.

На рынке стали появляться двухсторонние солнечные панели. LG считает, что они могут производить на 5-25% больше электроэнергии. Но многое зависит от поверхности, на которую устанавливаются панели (желательно, чтобы она была белой), а также от высоты установки.

Lawrence Berkeley National Laboratory утверждает, что затраты на двухсторонние панели с трекерами (следующие за солнцем) повышают капитальные затраты на 5%, а КПД — на 10-50%. В результате нормированная стоимость электроэнергии становится на 30% ниже.

В целом в мире солнечные панели вырабатывают всего 1,5% электроэнергии, хотя их установленная мощность составляет 6%.

КПД солнечных панелей за последние годы увеличилась 30%.

Хотя Европа начала солнечную революцию, в следующие 10 лет ведущую роль на этой сцене займут азиатские страны, в том числе Китай.

Дальнейшее снижение стоимости солнечных панелей и увеличение их КПД может привести к тому, что появятся избыточные мощности, которые будут отключать от генерации, накрывая от солнца. Более дешёвая и чистая электроэнергия может привести к переводу отопления с газа на электричество.

Широкое проникновение электромобилей также благоприятно сказывается на электроэнергетике. Во-первых, заряжать электромобили будет дешевле, в том числе при появлении излишней мощности. Во-вторых, электромобили благодаря аккумуляторам могут параллельно стать портативными устройствами для хранения электроэнергии. 2 миллиарда электромобилей могут хранить 60 ГВт электроэнергии.

В октябрьском отчёте Голдманов «More Lean, More Green II» подробно рассматривается микс солнечной и ветряной энергетики. В Испании уже сейчас есть корпоративный спрос на десятки гигаватт подключения к ветряным и солнечным станциям без субсидий со стороны государства.

Для снижения стоимости электроэнергии разным европейским странам нужно вводить разное количество солнечных панелей и ветряков.

Ветряные электроэнергетические установки наземного базирования уже сейчас прибыльные без субсидий. А в ближайшие годы ожидается выход на прибыль и ветрогенераторов морского базирования. Это вызвано как ростом цен на электроэнергию, так и снижением стоимости ветряков. Более того, ветряная энергетика станет дешевле с выпуском ветряков с большим размером лопастей (Примечение: GE сейчас в не очень хорошем положении, так что возникает вопрос, выпустят ли они 12МВт ветряк со 107 метровыми лопастями и окажется ли он надёжным)

В базе данных аукционов по возобновляемым источникам энергии Россия занимает очень печальное положение. Аукционы по договорам о поставке мощности с солнечных электростанций и ветряков обошлись в 60-90 и 150 евро за МВт. Это практически максимальные значения для всех стран из таблицы, нередко в разы превышающие цены в других странах.
via

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector