Что такое ток?

Содержание

Электрический ток

Что такое электрический ток

Электрический ток — направленное движение электрически заряженных частиц под воздействием электрического поля . Такими частицами могут являться: в проводниках – электроны , в электролитах – ионы (катионы и анионы), в полупроводниках – электроны и, так называемые, “дырки” (“электронно-дырочная проводимость”). Также существует “ток смещения “, протекание которого обусловлено процессом заряда емкости, т.е. изменением разности потенциалов между обкладками. Между обкладками никакого движения частиц не происходит, но ток через конденсатор протекает.

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/ t , где i – ток. А; q = 1,6 · 10 9 – заряд электрона, Кл; t – время, с.

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/ dt .

Первым условием длительного существования электрического тока рассматриваемого вида является наличие источника, или генератора, поддерживающего разность потенциалов между носителями зарядов. Второе условие — замкнутость пути. В частности, для существования постоянного тока необходимо наличие замкнутого пути, по которому заряды могут перемещаться внутри контура без изменения их значения.

Как известно, в соответствии с законом сохранения электрических зарядов они не могут создаваться или исчезать. Поэтому, если любой объем пространства, где протекают электрические токи, окружить замкнутой поверхностью, то ток, втекающий в этот объем, должен быть равен току, вытекающему из него.

Замкнутый путь, по которому течет электрический ток, называют цепью электрического тока, или электрической цепью. Электрическая цепь – делится на две части: внутреннюю, в которой электрически заряженные частицы движутся против направления электростатических сил, и внешнюю часть, в которой эти частицы движутся в направлении электростатических сил. Концы электродов, к которым подсоединяется внешняя цепь, называются зажимами.

Итак, электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками электрической цепи называют напряжением или падением напряжения на этом участке цепи .

Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

В общем случае, обозначив ток буквой i, а заряд q, получим:

Единица тока называется ампер (А) . Ток в проводнике равен 1 А, если через поперечное сечение проводника за 1 сек проходит электрический заряд, равный 1 кулон.

Рис. 1. Направленное движение электронов в проводнике

Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. При напряженности поля Е на электроны с зарядом е действует сила f = Ее. Величины f и Е векторные. В течение времени свободного пробега электроны приобретают направленное движение наряду с хаотическим. Каждый электрон имеет отрицательный заряд и получает составляющую скорости, направленную противоположно вектору Е (рис. 1). Упорядоченное движение, характеризуемое некоторой средней скоростью электронов vcp, определяет протекание электрического тока.

Электроны могут иметь направленное движение и в разреженных газах. В электролитах и ионизированных газах протекание тока в основном обусловлено движением ионов. В соответствии с тем, что в электролитах положительно заряженные ионы движутся от положительного полюса к отрицательному, исторически направление тока было принято обратным направлению движения электронов.

За направление тока принимается направление, в котором перемещаются положительно заряженные частицы, т.е. направление, противоположное перемещению электронов.
В теории электрических цепей за направление тока в пассивной цепи (вне источников энергии) взято направление движения положительно заряженных частиц от более высокого потенциала к более низкому. Такое направление было принято в самом начале развития электротехники и противоречит истинному направлению движения носителей заряда – электронов, движущихся в проводящих средах от минуса к плюсу.

Направление электрического тока в электролите и свободных электронов в проводнике

Величина, равная отношению тока к площади поперечного сечения S, называются плотностью тока: I / S

При этом предполагается, что ток равномерно распределен по сечению проводника. Плотность тока в проводах обычно измеряется в А/мм2.

По типу носителей электрических зарядов и среды их перемещения различают токи проводимости и токи смещения . Проводимость делят на электронную и ионную. Для установившихся режимов различают два вида токов: постоянный и переменный.

Электрическим током переноса называют явление переноса электрических зарядов заряженными частицами или телами, движущимися в свободном пространстве. Основным видом электрического тока переноса является движение в пустоте элементарных частиц, обладающих зарядом (движение свободных электронов в электронных лампах), движение свободных ионов в газоразрядных приборах.

Электрическим током смещения (током поляризации) называют упорядоченное движение связанных носителей электрических зарядов. Этот вид тока можно наблюдать в диэлектриках.

Полный электрический ток — скалярная величина, равная сумме электрического тока проводимости, электрического тока переноса и электрического тока смещения сквозь рассматриваемую поверхность.

Постоянным называют ток, который может изменяться по величине, но не изменяет своего знака сколь угодно долгое время. Подробнее об этом читайте здесь: Постоянный ток

Ток намагниченности — постоянный микроскопический (амперовый) ток, являющийся причиной существования собственного магнитного поля намагниченных веществ.

Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Величиной, характеризующей переменный ток, является частота (в системе СИ измеряется в герцах), в том случае, когда его сила изменяется периодически.

Переменный ток высокой частоты вытесняется на поверхность проводника. Токи высокой частоты применяется в машиностроении для термообработки поверхностей деталей и сварки, в металлургии для плавки металлов. Переменные токи подразделяют на синусоидальные и несинусоидальные . Синусоидальным называют ток, изменяющийся по гармоническому закону:

Скорость изменения переменного тока характеризуется его частотой, определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой f и измеряется в герцах (Гц). Так, частота тока в сети 50 Гц соответствует 50 полным колебаниям в секунду. Угловая частота w – скорость изменения тока в радианах в секунду и связана с частотой простым соотношением:

Установившиеся (фиксированные) значения постоянного и переменного токов обозначают прописной буквой I неустановившиеся (мгновенные) значения – буквой i. Условно положительным направлением тока считают направление движения положительных зарядов.

Переменный ток — это ток, который изменяется по закону синуса с течением времени.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае параметры переменного тока изменяются по гармоническому закону.

Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение — перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединённых проводниках могут оказаться неодинаковыми.

Ёмкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью.

При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью правил Кирхгофа, которые, однако, необходимо соответствующим образом модифицировать.

Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщённых резистора, конденсатора и катушки индуктивности, соединённых последовательно.

Рассмотрим свойства такой цепи, подключённой к генератору синусоидального переменного тока. Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

Конденсатор играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи подключить электрохимический элемент, то конденсатор начнёт заряжаться, пока напряжение на нём не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадёт до нуля.

Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой — наоборот.

Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

В устройствах-потребителях переменного тока переменный ток часто выпрямляется выпрямителями для получения постоянного тока.

Проводники электрического тока

Электрический ток во всех его проявлениях представляет собой кинетическое явление, аналогичное течению жидкости в замкнутых гидравлических системах. По аналогии процесс движения тока называется “течением” (ток течет).

Материал, в котором течёт ток, называется проводником. Некоторые материалы при низких температурах переходят в состояние сверхпроводимости. В таком состоянии они не оказывают почти никакого сопротивления току, их сопротивление стремится к нулю.

Во всех остальных случаях проводник оказывает сопротивление течению тока и в результате часть энергии электрических частиц превращается в тепло. Силу тока можно рассчитать по закону Ома для участка цепи и закону Ома для полной цепи.

Скорость движения частиц в проводниках зависит от материала проводника, массы и заряда частицы, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света в данной среде, то есть скорости распространения фронта электромагнитной волны.

Как ток влияет на организм человека

Ток, пропущенный через организм человека или животного, может вызвать электрические ожоги, фибрилляцию или смерть. С другой стороны, электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляцию определённых областей головного мозга применяют для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии. В организме человека и животных ток используется для передачи нервных импульсов.

Читайте также:  Блок индикации источника питания

По технике безопасности, минимально ощутимый человеком ток составляет 1 мА. Опасным для жизни человека ток становится начиная с силы примерно 0,01 А. Смертельным для человека ток становится начиная с силы примерно 0,1 А. Безопасным считается напряжение менее 42 В.

Что такое электрический ток

Когда мы произносим словосочетание «электрический ток», то обычно имеем ввиду самые разные проявления электричества. Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток.

Электролиз, электросварка, искры статического электричества на расческе, по спирали лампы накаливания течет ток, и даже в крохотном карманном фонарике через светодиод течет крохотный ток. Что и говорить о нашем сердце, которое также генерирует небольшой электрический ток, особенно это заметно во время прохождения процедуры ЭКГ.

В физике электрическим током принято называть упорядоченное движение заряженных частиц и в принципе любых носителей электрического заряда. Движущийся вокруг атомного ядра электрон — это тоже ток. И заряженная эбонитовая палочка, если держать ее в руке и двигать из стороны в сторону — также станет источником тока: не равный нулю заряд есть и он движется.

Физические аналогии между течением воды в системе водоснабжения и электрическим током: Электропроводка и трубопровод

Ток течет по проводам бытовых электроприборов питающихся от розетки — электроны перемещаются туда-сюда 50 раз за секунду — это называется переменным током.

Высокочастотные сигналы внутри электронных приборов — это тоже электрический ток, поскольку электроны и дырки (носители положительного заряда) перемещаются внутри схемы.

Любой электрический ток порождает своим существованием магнитное поле. Вокруг проводника с током оно обязательно присутствует. Не существует магнитного поля без тока и тока без магнитного поля.

Даже если магнитного поля вокруг тока не наблюдается, это лишь значит что магнитные поля двух токов в момент наблюдения взаимно скомпенсированы, как в двужильном проводе любого электрического чайника — переменные токи в каждый момент направлены в противоположные стороны и текут параллельно друг другу — их магнитные поля друг друга нейтрализуют. Это называется принципом наложения (суперпозиции) магнитных полей.

Практически для существования электрического тока необходимо наличие электрического поля, потенциального или вихревого. Исключительно редко заряды перемещаются чисто механическим образом (как например в генераторе Ван Де Граафа — наэлектризованной резиновой лентой).

Генератор Ван Де Граафа:

В электрическом поле заряженная частица испытывает действие электрической силы, которая у источников тока называется ЭДС — электродвижущая сила. ЭДС измеряется в вольтах как и напряжение между двумя точками электрической цепи. Чем больше напряжение приложенное к потребителю — тем больший электрический ток это напряжение способно вызвать.

Переменное напряжение порождает в проводнике, к которому оно приложено, переменный ток, поскольку электрическое поле, приложенное к носителям заряда, будет в этом случае также переменным. Постоянное напряжение — условие существования в проводнике тока постоянного.

Высокочастотное напряжение (изменяющее свое направление сотни тысяч раз за секунду) также способствует переменному току в проводниках, но чем выше частота — тем меньше носителей заряда участвуют в создании тока в толще проводника, поскольку электрическое поле действующее на заряженные частицы вытесняется ближе к поверхности, и получается что ток течет не в проводнике, а по его поверхности. Это называется скин-эффект.

Электрический ток может существовать в вакууме, в проводниках, в электролитах, в полупроводниках и даже в диэлектриках (ток смещения). Правда в диэлектриках постоянного тока быть не может, поскольку в них заряды не имеют возможности к свободному перемещению, а способны лишь смещаться в пределах внутримолекулярного расстояния от своего первоначального положения под действием приложенного электрического поля.

Настоящий электрический ток всегда предполагает возможность свободного перемещения электрических зарядов под действием электрического поля. Смотрите – условия существования электрического тока.

В металлических проводниках электрический ток представляет собой движение «свободных» электронов, причем электроны движутся в направлении, противоположном условному направлению тока (т. к. за направление тока условно принято направления движения зарядов).

Электрический ток в газах представляет собой движение положительных ионов в одном направлении, а электронов (и отрицательных ионов) в другом направлении. Наконец, электрический ток в электролитах представляет собой движение существующих в жидкости положительных и отрицательных ионов в противоположных направлениях.

Сила электрического тока — количество электричества, прошедшее через все поперечное сечение тока за 1 сек., зависит, с одной стороны, от количества движущихся зарядов, а с другой — от средней скорости их регулярного движения.

В металлических проводниках количество движущихся зарядов (свободных электронов) чрезвычайно велико (порядка 10 23 в 1 см 3 ), но зато средняя скорость регулярного движения очень мала (при самых сильных токах, которые может выдержать проводник, эта средняя скорость имеет величину порядка сантиметра в секунду). Обычно несколько меньше количество движущихся зарядов в жидкостях и соответственно их средние скорости несколько больше.

В газах же вследствие их гораздо меньшей плотности и вследствие того, что только небольшая доля всех молекул газа оказывается ионизированной, количество движущихся зарядов гораздо меньше, но зато средние скорости движения электронов и ионов гораздо больше, чем в металлических проводниках, и достигают сотен и даже тысяч километров в секунду.

Понятие “электрический ток” ввел итальянский физик Алессандро Вольта. Электрический ток, или по его версии “электрический флюид” протекал в замкнутой цепи, соединяющей металлическим проводником крайние кружки вольтова столба.

“Вотльтов столб” (1800 г.) был первый источник электричества неэлектростатического типа (источник постоянного электрического тока), который состоял из чередующихся между собой медных и цинковых кружков, разделенных суконными прокладками, смоченными подкисленной водой или кислотой.

Существование неизменного высокого потенциала на вольтовом столбе было явлением для того времени совершенно новым. Это был первый химический источник электричества, потенциал которого был постоянен во времени и не требовал каких-либо приемов электризации для его возобновления.

Вольтов столб, составленный из большого количества кружков, имел на концах достаточно высокий потенциал, который можно было обнаружить не только измерительными приборами (в частности электроскопом), но и прикоснувшись к крайним кружкам руками. При этом ощущался сильный электрический удар, как от лейденской банки.

Открытие Вольты очень быстро распространилось в физике, стало предметом дальнейших исследований. В 1800 г. ученые-физики с помощью вольтова столба обнаружили электрохимическое действие тока, и в частности разложение под действием тока воды на кислород и водород. Опыты с гальваническими элементами позволили обнаружить, кроме химических, и другие новые свойства тока, в том числе его тепловое и магнитное действие.

Французский физик А. М. Ампер посвятил ряд своих работ изучению связи электрического тока и магнетизма. Он обнаружил, что два проводника с током испытывают взаимное воздействие — притяжение или отталкивание в зависимости от направления в них токов. Своими работами он заложил основы электродинамики.

Он предложил термин “электрический ток” и ввел понятие о его направлении, совпадающем с движением положительного электричества. В честь А. М. Ампера названа единица измерения электрического тока. Ампер является одной из семи основных единиц системы СИ.

Электрический ток обладает рядом свойств, которые могут быть эффективно использованы во многих практических случаях. К таким свойствам относятся трансформация простыми техническими средствами энергии электрического тока в энергию других видов (тепловую, световую, механическую, химическую) и возможность передачи ее на большие расстояния, быстрота распространения.

Электрический ток — что это такое

Электрический ток (эл ток, или просто ток) – движущая сила современной человеческой цивилизации. Без него остановятся заводы и фабрики, погрузятся во мрак города, пропадут тепло и горячая вода в домах, многие другие блага и достижения технического прогресса станут недоступными. Однако, несмотря на такую огромную роль данного явления в человеческой жизни, многие не знают, в чем его суть, благодаря чему он возникает и протекает. В этой статье будет рассмотрено, что такое ток, как он возникает, где применяется, какие частицы являются его носителями в различных веществах, какие физические законы являются основными для данного явления.

Основные определения

Существует 2 основных определения данного явления: классическое и приводимое в академических учебниках. Суть каждого из них следующая:

  • Классическое определение электрического тока гласит, что он представляет собой направленное строго упорядоченное движение частиц, обладающих зарядом;
  • В академических учебных пособиях указывается, что электрический ток – это скорость, с которой заряд изменяется с течением определенного времени.

Из двух данных определений первое наиболее часто применяемое, второе – используется реже, так как не описывает сути природы электротока.

Электрическая энергия

Понятие «электрическая энергия» означает высвобождаемую при движении потока заряженных частиц энергию, источником которой служит аккумуляторная батарея или генератор, потребителем – подключенные к электрической сети приборы и оборудование. Применяется оно, как правило, в быту и технике в таком сокращенном варианте как «электроэнергия». Единицей измерения электроэнергии является киловатт-час (кВт/ч).

Где применяется электрический ток

Данное явление нашло широкое применение в таких областях человеческой цивилизации, как:

  • Промышленность;
  • Сельское хозяйство;
  • Коммунальное хозяйство;
  • Банковская сфера;
  • Транспорт;
  • Информационные технологии.

Кроме данных областей, электричество является основой быта любого современного человека – без него невозможно функционирование бытовых приборов, аудио,- и видеотехники, внутреннего и наружного освещения, отопительных котлов, охранного оборудования и других потребителей электроэнергии.

Условия, необходимые для получения электротока

Основными условиями образования электрического тока являются следующие:

  • Наличия источника – соединенного с турбиной генератора, аккумуляторной или солнечной батареей.
  • Достаточное количество свободных заряженных частиц в проводнике;
  • Электрическое поле, создаваемое источником питания и являющееся той сторонней силой, которая упорядочивает движение зарядов в проводнике и цепи;
  • Замкнутая цепь, концы которой подключены к полюсам источника питания.

Только наличие всех данных условий гарантирует, что такое явление, как электрический ток, будет длительно протекать в той или иной цепи, запитывая различных потребителей.

Электрический ток в разных средах

В металлах

В металлах протекание тока происходит, благодаря движению таких отрицательно заряженных частиц, как электроны. При подключении к проводнику из меди, алюминия источника питания данные частицы движутся от его отрицательного полюса к положительному или от фазы к нулю.

В полупроводниках

В полупроводниках (кремний, германий) основными носителями зарядов являются отрицательно заряженные электроны и обладающие положительным зарядом «дырки». Избыток электронов образуется при введении в материал донорной примеси n-типа с большим, по сравнению с исходным веществом, количеством электронов на внешнем электронном уровне. Образование «дырок» происходит при введении в исходный полупроводник вещества с меньшим количеством электронов на внешнем электронном уровне – акцепторной примеси p-типа.

Протекание тока осуществимо в материалах на примере самой простой полупроводниковой радиодетали (диода), состоящей из двух пластинок кремния с введенными в них примесями n и p-типа. При этом пластинка с примесью n-типа называется катод, p-типа – анод.

Читайте также:  Обзор беспроводного блока переключения

При подключении к катоду отрицательного полюса источника питания, а к аноду – положительного, вследствие притяжения электронов из области n-типа плюсом батареи в цепи начнет протекать ток. При подключении питания к диоду в обратной полярности ток протекать не будет – электроны катода будут притягиваться к положительному полюсу батареи, «дырки» анода – к отрицательному.

В вакууме и газе

В обычном состоянии газы являются типичными диэлектриками. Однако при воздействии на газ высокой температуры, ультрафиолетового или рентгеновского излучения он подвергается ионизации – находящиеся в нем атомы теряют свои электроны или притягивают (захватывают) их из соседних атомов. Вследствие данного эндотермического процесса атомы газа теряют свою электронейтральность, и из них образуются такие носители зарядов, как ионы (анионы – отрицательно заряженные и катионы – положительно заряженные).Сам газ в таком состоянии называется плазмой.

В жидкости

В жидкостях, обладающих электрической проводимостью (электролитах), основными носителями зарядов являются ионы, образующиеся при электролитической диссоциации солей.

Законы электрического тока

Основными законами электротехники являются такие всем известные из курса школьной физики постулаты, как:

  • Закон Ома;
  • Закон Фарадея;
  • Закон Джоуля-Ленца.

Опасность электрического тока

Помимо полезных свойств, ток – это также достаточно опасное для человеческого здоровья и жизни явление. Так, при соприкосновении с оголенным проводником, в котором величина силы тока свыше 0,1 Аи напряжения – 100 В, возможны серьезные электротравмы, повреждения внутренних органов и даже остановка сердца. Поэтому перед началом работ на не обесточенном по каким-либо причинам участке цепи характеристики протекающего по нему электротока должны в обязательном порядке измеряться, чтобы разумно оценивать последствия поражения током при контакте с токопроводящей поверхностью.

На заметку. При работе на электроустановках необходимо знать, как называются предупреждающие знаки электрической безопасности. Это нужно для того, чтобы ориентироваться в том, насколько опасна работа на том или ином участке цепи в случае его вынужденного или случайного нахождения под напряжением.

Таким образом, знание природы и сути такого явления, как электрический ток (сокращенно эл ток это), позволяет не только понять, как он протекает по тем или иным веществам, но и осознать опасность данного явления для человеческого здоровья при неаккуратном обращении с находящимися под напряжением проводниками, вышедшими из строя электроприборами.

Видео

Электрический ток

Электрический ток – направленное движение заряженных частиц в электрическом поле.

Заряженными частицами могут являться электроны или ионы (заряженные атомы).

Атом, потерявший один или несколько электронов, приобретает положительный заряд. – Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. – Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест – дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE, которая перемещает заряд в направлении вектора этой силы.

На рисунке показано, что вектор силы F = -qE, действующей на отрицательный заряд -q, направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m 2 :

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ1 и φ2 между этими точками из расчёта:

Электрический ток может быть постоянным или переменным.

Постоянный ток – электрический ток, направление и величина которого не меняются во времени.

Переменный ток — электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R:

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток.

В металлических проводниках носителями зарядов являются свободные электроны.
С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.
При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.
Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. – Электролиз.
Анионы – положительные ионы. Перемещаются к отрицательному электроду – катоду.
Катионы – отрицательные ионы. Перемещаются к положительному электроду – аноду.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах – плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах – лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению.
Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.
С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.
При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники – изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.
При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.
При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.
Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.
В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного In и дырочного Ip токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Электрический ток, напряжение — поймет даже ребенок!

Автор: Владимир Васильев · Опубликовано 11 января 2015 · Обновлено 29 августа 2018

Всем привет, на связи с вами снова Владимир Васильев. Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех, только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?». Может быть это прошаренный спец зашел из любопытства почитать что я тут накалякал? А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Содержание статьи

Знаете все это маловероятно, потому как для прошаренного специалиста все это уже пройденный этап и скорее всего все уже не так интересно и они сами с усами. Им может быть интересно лишь из праздного любопытства, мне конечно очень приятно и я жду каждого с распростертыми объятьями.

Так что я пришел к выводу, что основной контингент моего блога да и большинства радиолюбительских сайтов это новички и любители рыскающие по интернету в поисках полезной информации. Так какого лешего, у меня ее так мало? Будет в скором временя поболее так что [urlspan] не пропустите! [/urlspan]

Я вспоминаю себя, когда я искал в интернете какую-нибудь простенькую схемку чтобы с чего-нибудь начать, но постоянно что-то не подходило, что-то казалось заумным. Мне не хватало азов, таких, чтобы можно было по принципу от простого к сложному начать разбираться в интересующей меня теме.

Кстати первая книга которая мне действительно помогла, от прочтения которой действительно начало приходить понимание — это была книга «Искусство схемотехники» П. Хоровица, У. Хилла. Я писал про нее в этой статье, там и книжку можно скачать. Так вот, если вы новичок то обязательно ее скачайте и пусть она станет вашей настольной книгой.

Что такое напряжение и ток?

Кстати действительно что же такое электрический ток и напряжение? Я думаю, что никто на самом деле и не знает, ведь чтобы это знать это надо хотябы видеть. Кто может видеть ток, бегущий по проводам?

Да никто, человечество еще не достигло таких технологий, чтобы воочию наблюдать движения электрических зарядов. Все что мы видим в учебниках и научных трудах это некая абстракция созданная в результате многочисленных наблюдений.

Ну ладно об этом можно много рассуждать… Так давайте попробуем разобраться, что такое электрический ток и напряжение. Я не буду писать определения, определения не дают самого понимания сути. Если интересно, возьмите любой учебник по физике.

Так как мы его не видим электрического тока и всех процессов протекающих в проводнике, тогда попробуем создать аналогию.

И традиционно электрический ток текущий в проводнике сравнивают с водой бегущей по трубам. В нашей аналогии вода это электрический ток. Вода бежит по трубам с определенной скоростью, скорость это сила тока, измеряемая в амперах. Ну трубы это само собой проводник.

Читайте также:  Работа с ультразвуковым датчиком расстояния hc-sr04 в bascom-avr

Хорошо, электрический ток мы себе представили, но а что такое напряжение? Сейчас помозгуем.

Вода в трубе, в отсутствии каких-либо сил (сила тяжести, давления) теч не будет, она будет покоиться как и любая другая жижа вылитая на пол. Так вот эта сила или точнее сказать энергия в нашей водопроводной аналогии и будет тем самым напряжением.

Но что происходит с водой бегущей из резервуара расположенного высоко над землей? Вода устремляется бурным потоком из резервуара к поверхности земли, гонимая силами тяготения. И чем выше от земли расположен резервуар тем с большей скоростью вытекает вода из шланга. Понимаете о чем я говорю?

Чем выше резервуар, тем больше сила (читай напряжение) воздействующая на воду. И тем больше скорость водного потока (читай сила тока). Теперь становится понятно и в голове начинает создаваться красочная картинка.

Понятие потенциала, разности потенциалов

С понятием напряжения электрического тока тесно связано понятие «потенциал» , или «разность потенциалов». Хорошо, обратимся снова к нашей водопроводной аналогии.

Наш резервуар находится на возвышенности что позволяет воде беспрепятственно стекать по трубе вниз. Так как бак с водой на высоте, то и потенциал этой точки будет более высоким или более положительным чем тот что находится на уровне земли. Видите что получается?

У нас появилось две точки имеющие разные потенциалы, точнее разную величину потенциала.

Получается, для того чтобы электрический ток мог бежать по проводу, потенциалы не должны быть равны. Ток бежит от точки с большим потенциалом к точки с меньшим потенциалом.

Помните такое выражение, что ток бежит от плюса к минусу. Так вот это все тоже самое. Плюс это более положительный потенциал а минус более отрицательный.

Кстати а хотите вопрос на засыпку? Что произойдет с током, если величины потенциалов будет периодически меняться местами?

Тогда мы будем наблюдать то как электрический ток меняет свое направление на противоположное каждый раз как потенциалы поменяются. Это получится уже переменный ток. Но его мы пока рассматривать не будем, дабы в голове сформировалось ясное понимание процессов.

Измерение напряжения

Для замера напряжение используется прибор вольтметр, хотя сейчас наиболее популярны мультиметры. Мультиметр это такой комбинированный прибор имеющий в себе много чего. О нем я писал в статье и рассказывал как им пользоваться.

Вольтметр это как раз тот прибор который измеряет разность потенциалов между двумя точками. Напряжение (разность потенциалов) в любой точке схемы обычно измеряется относительно НОЛЯ или ЗЕМЛИ или МАССЫ или МИНУСА батарейки. Не важно главное это должна быть точка имеющая наименьший потенциал во всей схеме.

Итак чтобы измерить напряжение постоянного тока между двумя точками, делаем следующее. Черный (минусовой ) щуп вольтметра втыкается в ту точку, где предположительно мы можем наблюдать точку с меньшим потенциалом (НОЛЬ). Красный щуп (плюсовой) втыкаем в точку, потенциал которой нам интересен.

И результатом измерения будет числовое значение разности потенциалов, или другими словами напряжение.

Измерение тока

В отличие от напряжения, которое замеряется в двух точках, величина тока замеряется в одной точке. Так как сила тока (или говорят просто ток) по нашей аналогии есть скорость течения воды, то эту скорость нужно замерять только в одной точке.

Нам нужно распилить водопровод и вставить в разрыв некий счетчик, который будет подсчитывать литры и минуты. Както так.

Аналогично если вернемся в реальный мир нашей электрической модели, то получим тоже самое. Чтобы замерить величину электрического тока, нам нужно подключить в разрыв электрической цепи нехитрый прибор — амперметр. Амперметр также входит в состав мультиметра. Вы также можете почитать в моей статье.

Щупы мультиметра нужно переставить в режим измерения тока. Затем перекусываем наш проводник, и подключаем обрывки провода к мультиметру и вуаля — на экране мультиметра будет показана величина тока.

Закон Ома

Ну что дорогие друзья, я думаю что мы не теряли время даром. Ознакомившись с нашими водопроводными моделями в голове начал складываться пазл, начало формироваться понимание.

Ну чтож попробуем проверить его на законе Ома.

  • I — ток измеряемый в Амперах (А);
  • U-напряжение измеряемое в Вольтах (В);
  • R-сопротивление измеряемое в Омах (Ом)

Ом нам говорил, что Электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Про сопротивление я сегодня не говорил, но я думаю что вы поняли. Сопротивление электрическому току оказывается материалом проводника. В нашей водопроводной системе сопротивление току воды оказывают ржавые трубы, забитые ржавчиной и прочей какой. 🙂

Таким образом закон Ома работает во всей своей красе что для водопроводной системы, что для электрической. Может быть мне податься в сантехники, уж очень много схожего. 🙂

Чем выше задран резервуар с водой, тем быстрее по трубам будет теч вода. Но если трубы загажены то скорость будет меньше. Чем больше сопротивление воде тем медленнее она будет теч. Если засор, то вода вообще может встать.

Ну и для электричества. Величина тока зависит прямо пропорционально от величины напряжения (разности потенциалов), и обратно пропорционально зависит от сопротивления.

Чем выше напряжение тем больше величина тока, но чем больше сопротивление тем меньше величина тока. Напряжение может быть очень большим, но ток может не теч из-за обрыва. А обрыв это все равно, что если вместо металлического проводника мы подключили проводник из воздуха, а воздух обладает просто гигантским сопротивлением. Вот ток и остановится.

Чтоже дорогие друзья, вот и подходит время закругляться, вроде все что хотел сказать в этой статье я сказал. Если остаются какие-либо вопросы спрашивайте в комментариях. Дальше будет больше, планирую написать череду обучающих материалов, так что [urlspan] не пропустите… [/urlspan]

Желаю вам удачи, успехов и до новых встреч!

Что такое электрический ток и каковы условия его существования

Простое объяснение условий существования электрического тока. Как протекает ток в металлах, полупроводниках, газах и жидкостях.

Без электричества невозможно представить жизнь современного человека. Вольты, Амперы, Ватты – эти слова звучат в разговоре об устройствах, которые работают от электричества. Но что это такое электрический ток и каковы условия его существования? Об этом мы расскажем далее, предоставив краткое объяснение для начинающих электриков. Содержание:

  • Определение
  • Условия существования электрического тока
  • Электрический ток в разных средах
  • В металлах
  • В полупроводниках
  • В вакууме и газе
  • В жидкости
  • Заключение

Определение

Электрическим током является направленное движение носителей зарядов – это стандартная формулировка из учебника физики. В свою очередь носителями заряда называются определенные частицы вещества. Ими могут быть:

  • Электроны – отрицательные носители заряда.
  • Ионы – положительные носители заряда.

Но откуда берутся носители заряда? Для ответа на этот вопрос нужно вспомнить базовые знания о строении вещества. Всё что нас окружает – вещество, оно состоит из молекул, мельчайших его частиц. Молекулы состоят из атомов. Атом состоит из ядра, вокруг которого движутся электроны на заданных орбитах. Молекулы также хаотично движутся. Движение и структура каждой из этих частиц зависят от самого вещества и влияния на него окружающей среды, например температуры, напряжения и прочего.

Ионом называют атом, у которого изменилось соотношение электронов и протонов. Если изначально атом нейтрален, то ионы в свою очередь делят на:

  • Анионы – положительный ион атома, потерявшего электроны.
  • Катионы – это атом с «лишними» электронами, присоединившиеся к атому.

Единица измерения тока – Ампер, согласно закону Ома он вычисляется по формуле:

где U – напряжение, [В], а R – сопротивление, [Ом].

Или прямопропорционален количеству заряда, перенесенному за единицу времени:

где Q – заряд, [Кл], t – время, [с].

Условия существования электрического тока

Что такое электрический ток мы разобрались, теперь давайте поговорим о том, как обеспечить его протекание. Для протекания электрического тока необходимо выполнение двух условий:

  1. Наличие свободных носителей заряда.
  2. Электрическое поле.

Первое условие существования и протекания электричества зависит от вещества, в котором протекает (или не протекает) ток, а также его состояния. Второе условие также выполнимо: для существования электрического поля обязательно наличие разных потенциалов, между которыми находится среда, в которой будут протекать носители заряда.

Напомним: Напряжение, ЭДС – это разность потенциалов. Отсюда следует, что для выполнения условий существования тока – наличия электрического поля и электрического тока, нужно напряжение. Это могут быть обкладки заряженного конденсатора, гальванический элемент, ЭДС возникшее под действием магнитного поля (генератор).

Как он возникает, мы разобрались, давайте поговорим о том, куда он направлен. Ток, в основном, в привычном для нас использовании, движется в проводниках (электропроводка в квартире, лампочки накаливания) или в полупроводниках (светодиоды, процессор вашего смартфона и другая электроника), реже в газах (люминесцентные лампы).

Так вот основными носителями заряда в большинстве случаев являются электроны, они движутся от минуса (точки с отрицательным потенциалом) к плюсу (точке с положительным потенциалом, подробнее об этом вы узнаете ниже).

Но интересен тот факт, что за направление движения тока было принято движение положительных зарядов – от плюса к минусу. Хотя фактически всё происходит наоборот. Дело в том, что решение о направлении тока было принято до изучения его природы, а также до того, как было определено за счет чего протекает и существует ток.

Электрический ток в разных средах

Мы уже упоминали о том, что в различных средах электрический ток может различаться по типу носителей заряда. Среды можно разделить по характеру проводимости (по убыванию проводимости):

  1. Проводник (металлы).
  2. Полупроводник (кремний, германий, арсенид галия и пр).
  3. Диэлектрик (вакуум, воздух, дистиллированная вода).

Заключение

Подведем итоги, для протекания электрического тока нужны свободные носители зарядов:

  • электроны в проводниках (металлы) и вакууме;
  • электроны и дырки в полупроводниках;
  • ионы (анионы и катионы) в жидкости и газах.

Для того, чтобы движение этих носителей стало упорядоченны, нужно электрическое поле. Простыми словами — приложить напряжение на концах тела или установить два электрода в среде, где предполагается протекание электрического тока.

Также стоит отметить, что ток определенным образом воздействует на вещество, различают три типа воздействия:

Напоследок рекомендуем просмотреть полезно видео, в котором более подробно рассматриваются условия существования и протекания электрического тока:

Полезное по теме:

  • Зависимость сопротивления проводника от температуры
  • Закон Джоуля-Ленца простыми словами
  • Какой электрический ток опаснее для человека: постоянный или переменный

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector