Как подключить к устройству нагрузку?

Содержание

Как подключить мощную нагрузку к микроконтроллеру

Что нужно для того, чтобы стать профессиональным разработчиком программ для микроконтроллеров и выйти на такой уровень мастерства, который позволит с лёгкостью найти и устроиться на работу с высокой зарплатой (средняя зарплата программиста микроконтроллеров по России на начало 2017 года составляет 80 000 рублей). Подробнее.

Как вы понимаете, мощную и/или высоковольтную нагрузку (такую как лампы накаливания, электродвигатели, электронагревательные элементы и т.п.) нельзя напрямую подключить к выходу микроконтроллера. Потому что выходы микроконтроллера:

  1. Не рассчитаны на работу с высоким напряжением.
  2. Не рассчитаны на управление мощной нагрузкой (нагрузкой, которая потребляет большой ток).
  3. Не имеют гальванической развязки (иногда это важно даже при управлении слаботочной нагрузкой).

Из этого следует, что для управления с помощью микроконтроллера мощной нагрузкой необходимо применять какие-то хитрые способы сопряжения выходов микроконтроллера с нагрузкой. Этих способов несколько:

Более подробно эти виды подключения будут рассмотрены в соответствующих статьях. А здесь я буду говорить только о достоинствах и недостатках этих способов.

Подключение нагрузки через оптрон

Итак, один из наиболее простых способов – это подключение через оптрон (фотосемистор, фототиристор и т.п.).

Этот способ подходит для управления активной нагрузкой, такой как лампы накаливания, электронагреватели и т.п. Его преимуществами являются наличие гальванической развязки, относительная простота подключения и дешевизна оптронов. Серьёзный недостаток, пожалуй, один. Но довольно существенный – при управлении индуктивной нагрузкой, такой как электродвигатели, симистор/тиристор оптрона может самопроизвольно открыться (без команды от микроконтроллера). Так что для такого случая придётся принимать дополнительные меры, усложняющие устройство на микроконтроллере.

Также недостатком можно считать то, что для использования оптрона надо хоть немного разбираться в электронике.

Подключение нагрузки через транзистор

Тоже выполняется довольно просто. Стоимость обычных транзисторов тоже относительно невелика. Это плюс.

Минусы – можно управлять только нагрузкой постоянного тока (речь идёт о дешёвых биполярных транзисторах). Причём напряжение нагрузки тоже по возможности должно быть небольшим. Потому что высоковольтные транзисторы стоят уже не очень дёшево (а некоторые и очень дорого).

Ещё один недостаток – отсутствие гальванической развязки между нагрузкой и выходом микроконтроллера.

И, также как в случае с оптроном – надо хотя бы немного разбираться в электронике, чтобы подобрать правильный транзистор и рассчитать схему включения самого транзистора и дополнительных резисторов.

Подключение нагрузки через электромагнитное реле

Подключить электромагнитное реле проще простого. Но это только на первый взгляд. На самом деле тоже есть особенности, которые надо знать (расскажу о них в соответствующей статье). Иначе можно просто вывести из строя выход микроконтроллера.

Преимущества электромагнитного реле:

  1. Низкая цена.
  2. Можно управлять нагрузкой практически любой мощности и напряжения.
  3. Можно управлять нагрузкой как постоянного, так и переменного тока.
  4. Можно управлять как активной, так и индуктивной нагрузкой без каких-либо дополнительных ухищрений.
  5. Есть гальваническая развязка между выходом микроконтроллера и нагрузкой.
  6. Не требуется особых познаний в электронике, чтобы подобрать реле под нагрузку.
  1. Необходимо принимать дополнительные меры для защиты выхода микроконтроллера.
  2. Относительно низкое быстродействие (реле переключается существенно медленнее, чем полупроводниковые приборы – иногда это важно).
  3. Большие габариты и вес. Хотя современные реле довольно миниатюрны, их размеры и вес всё-равно больше, чем размеры полупроводниковых приборов.
  4. Относительно низкий ресурс. Так как в реле имеются контакты, то ресурс реле ниже, чем у полупроводников. Из-за искрения контакты быстрее выходят из строя. Хотя, как показывает практика, качественные реле могут работать десятки лет без поломок.

Подключение нагрузки через твёрдотельное реле

Твёрдотельное реле – это полупроводниковый прибор, который объединяет в себе, например, фотосимистор и всю необходимую для его управления обвязку. То есть твёрдотельное реле можно просто подключить к выходу микроконтроллера, не заботясь о том, какое сопротивление должны иметь гасящие резисторы и т.п.

Однако использовать твёрдотельные реле сложнее, чем обычные реле. Потому как у твёрдотельных реле довольно много разных характеристик, в которых надо разбираться. Впрочем, изучить эту тему несложно.

Недостаток у твёрдотельного реле, пожалуй, один – это высокая цена. Твёрдотельное реле, как правило, стоит в 5. 10 раз дороже обычного электромагнитного реле (то есть это сотни и тысячи рублей за штуку).

Выводы

Какой прибор в каких случаях использовать – определяется из задачи и условий эксплуатации устройства, которое вы проектируете. Здесь всё довольно непросто – придётся вам разбираться самим (я пока не готов всё это описывать))).

Если вы немного запутались и не можете выбрать, что же использовать в вашем устройстве, то совет могу дать такой:

  1. Для активной нагрузки постоянного тока низкого напряжения (до 50 В) используйте транзисторы.
  2. Для любых нагрузок переменного тока и для мощных высоковольтных нагрузок постоянного тока используйте электромагнитные реле.
  3. Ну а вообще думайте, что и как использовать, в зависимости от технических требований к устройству.

Если вы только начинаете разрабатывать устройства, то это вполне пригодный совет. Ну а когда наберётесь опыта, то уже сами сможете определять, какие и когда приборы использовать.

Как подключить нагрузку к блоку управления на микросхемах

Статья о различных способах подключения нагрузки к микроконтроллерному блоку управления с помощью реле и тиристоров.

Все современное оборудование, как промышленное, так и бытовое приводится в действие электричеством. При этом всю его электрическую схему можно разделить на две большие части: устройства управления (контроллеры от английского слова CONTROL – управлять) и исполнительные механизмы.

Лет двадцать назад блоки управления выполнялись на микросхемах малой и средней степени интеграции. Это были серии микросхем К155, К561, К133, К176 и им подобные. Они называются логическими цифровыми микросхемами, так как выполняют логические операции над сигналами, а сами сигналы являются цифровыми (дискретными).

В точности также, как обычные контакты: «замкнут – разомкнут». Только в этом случае эти состояния называются соответственно «логическая единица» и «логический ноль». Напряжение логической единицы на выходе микросхем находится в пределах от половины напряжения питания до его полной величины, а напряжение логического нуля у таких микросхем, как правило, 0…0,4В.

Алгоритм работы таких блоков управления осуществлялся за счет соответствующего соединения микросхем, и количество их было достаточно велико.

В настоящее время все блоки управления разрабатываются на основе микроконтроллеров разных типов. В этом случае алгоритм работы закладывается не схемным соединением отдельных элементов, а «прошитой» в микроконтроллере программой.

В связи с этим вместо нескольких десятков, а то и сотен микросхем блок управления содержит микроконтроллер и некоторое количество микросхем для взаимодействия с «внешним миром». Но, несмотря на такое усовершенствование, сигналы микроконтроллерного блока управления все те же цифровые, что и у старых микросхем.

Понятно, что мощности таких сигналов недостаточно, чтобы включить мощную лампу, двигатель, да и просто реле. В этой статье мы рассмотрим, какими способами можно подключить к микросхемам мощные нагрузки.

Самые простые способы это включение нагрузки через реле. На рисунке 1 реле включается при помощи транзистора VT1, для этого на его базу через резистор R1 от микросхемы подается логическая единица, транзистор открывается и включает реле, которое своими контактами (на рисунке не показаны) включает нагрузку.

Каскад, показанный на рисунке, 2 работает по-другому: чтобы включить реле на выходе микросхемы должен появиться логический 0, который закроет транзистор VT3. при этом транзистор VT4 откроется и включит реле. Кнопкой SB3 можно включить реле вручную.

На обоих рисунках можно заметить, что параллельно обмоткам реле включены диоды, причем по отношению к напряжению питания в обратном (непроводящем) направлении. Их назначение погасить ЭДС самоиндукции (может в десять и более раз превышать напряжение питания) при выключении реле и защитить элементы схемы.

Если же в схеме не одно, два реле, а намного больше, то для их подключения выпускается специализированная микросхема ULN2003A, допускающая подключение до семи реле. Такая схема включения показана на рисунке 3, а на рисунке 4 внешний вид современного малогабаритного реле.

На рисунке 5 показана схема подключения нагрузки с помощью оптронных тиристоров ТО125-12,5-6 (вместо которых ничего не меняя в схеме, можно подключить реле). На этой схеме следует обратить внимание на транзисторный ключ, выполненный на двух транзисторах VT3, VT4. Подобное усложнение вызвано тем, что некоторые микроконтроллеры, например AT89C51, AT89C2051 на время сброса при включении в течение нескольких миллисекунд удерживают на всех выводах уровень логической 1. Если нагрузку подключить по схеме приведенной на рисунке 1, то срабатывание нагрузки произойдет сразу же при включении питания, что может быть очень нежелательным явлением.

Для того, чтобы включить нагрузку (в данном случае светодиоды оптронных тиристоров V1,V2) на базу транзистора VT3 через резистор R12 следует подать логический 0, что приведет к открытию VT3 и VT4. Последний зажжет светодиоды оптотиристоров, которые откроются и включат сетевую нагрузку. Оптронные тиристоры обеспечивают гальваническую развязку от сети собственно схемы управления, что повышает электробезопасность и надежность схемы.

Несколько слов о тиристорах. Не вдаваясь в технические подробности и вольтамперные характеристики можно сказать, что тиристор – это простой диод, у них даже обозначения похожи. Вот только у тиристора имеется еще управляющий электрод. Если на него подать положительный относительно катода импульс, даже кратковременный, то тиристор откроется.

В открытом состоянии тиристор будет находиться до тех пор, пока через него течет ток в прямом направлении. Этот ток должен быть не менее некоторой величины, называемой током удержания. Иначе тиристор просто не включится. Выключить тиристор можно лишь разорвав цепь или подав напряжение обратной полярности. Поэтому, чтобы пропустить обе полуволны переменного напряжения используется встречно – параллельное включение двух тиристоров (см. рис. 5).

Читайте также:  Дополнительный модуль для raspberry pi объединяет функции lcd-экрана и клавиатуры

Чтобы не делать такого включения выпускаются симисторы или на буржуйском языке триаки. В них уже в одном корпусе изготовлены два тиристора, включенные встречно – параллельно. Управляющий электрод у них общий.

На рисунке 6 показаны внешний вид и цоколевка тиристоров, а на рисунке 7 то же для триаков.

На рисунке 8 показана схема подключения триака к микроконтроллеру (выходу микросхемы) при помощи специального маломощного оптотриака типа MOC3041.

Этот драйвер внутри себя содержит светодиод, подключенный к выводам 1 и 2 (на рисунке показан вид на микросхему сверху) и собственно оптотриак, который, будучи засвечен светодиодом, открывается (выводы 6 и 4) и, через резистор R1, соединяет управляющий электрод с анодом, за счет чего открывается мощный триак.

Резистор R2 предназначен для того, чтобы не произошло открытия триака в отсутствии управляющего сигнала в момент включения питания, а цепочка C1, R3 предназначена для подавления помех в момент переключений. Правда, MOC3041 особых помех не создает, поскольку имеет схему CROSS ZERO (переход напряжения через 0), и включения происходят в тот момент, когда сетевое напряжение только перешло через 0.

Все рассмотренные схемы имеют гальваническую развязку от питающей сети, что обеспечивает надежность работы и электробезопасность при значительной коммутируемой мощности.

Если же мощность незначительна и не требуется гальваническая развязка контроллера от сети, то возможно подключение тиристоров непосредственно к микроконтроллеру. Подобная схема приведена на рисунке 9.

Это схема елочной гирлянды произведенной, конечно, в Китае. Управляющие электроды тиристоров MCR 100-6 через резисторы подключены непосредственно к микроконтроллеру (находится на плате под каплей черного компаунда). Мощность управляющих сигналов настолько мала, что потребление тока на все четыре сразу, менее 1 миллиампера. При этом обратное напряжение до 800В и ток до 0,8А. Габаритные же размеры как у транзисторов КТ209.

Конечно, в одной короткой статье невозможно описать сразу все схемы, но, основные принципы их работы, кажется рассказать удалось. Сложностей особых тут нет, схемы все проверены на практике и, как правило, при ремонте или самостоятельном изготовлении огорчений не приносят.

Как безопасно подключать внешние устройства к микроконтроллеру?

В этой статье рассматриваются важные драйверы и правильные схемы, необходимые для безопасного подключения внешних устройств к вводу/выводу MCU (микроконтроллер, англ. – Microcontroller Unit, MCU).

Введение

Как только у вас возникнет идея для проекта, очень заманчиво перейти прямо к подключению Arduino к схемам и устройствам, таким как светодиоды, реле и динамики. Однако делать это без правильной схемы может оказаться фатальным для вашего микроконтроллера.

Многие устройства ввода/вывода потребляют много тока (> 100 мА), которые большинство микроконтроллеров не могут обеспечить в безопасном режиме, а когда они пытаются обеспечить такое количество тока, они часто ломаются. Здесь нам на помощь приходят специальные схемы, которые называются «драйверы» (англ. – drivers). Драйверы – это схемы, которые могут принимать небольшой слабый сигнал от микроконтроллера, а затем использовать этот сигнал для управления каким-либо энергопотребляющим устройством.

Для правильной работы микроконтроллеров с внешними устройствами иногда требуются специальные схемы. Эти внешние устройства включают:

  • Цепи драйвера
  • Схемы защиты входа
  • Схемы защиты выхода
  • Цепи изоляции

Итак, давайте посмотрим на некоторые из этих схем и на то как они работают!

Простой светодиодный (LED) драйвер

Эта простая схема удобна для управления светодиодами с высоким энергопотреблением с помощью микроконтроллеров, где выход микроконтроллера подключен к «IN».

Пример простого светодиодного драйвера

Когда микроконтроллер выводит 0, транзистор Q1 отключается, а также светодиод D1. Когда микроконтроллер выводит 1, транзистор включается, и поэтому D1 также включается. Значение R1 зависит от выходного напряжения вашего микроконтроллера, но значения между 1KΩ

10KΩ часто работают хорошо. Значение R2 зависит от размера нагрузки, которую вы питаете, и эта схема подходит для питания устройств до 1А и не более.

Простой релейный драйвер

Устройствам, которые потребляют более 1 А тока и будут включаться и выключаться раз в несколько секунд, лучше подойдут реле.

Хотя реле достаточно просты (небольшой электромагнит, который привлекает металлический рычаг для замыкания схемы), они не могут управляться непосредственно микроконтроллером.

Для обычных реле требуются токи около 60 мА

100 мА, что слишком много для большинства микроконтроллеров, поэтому реле требуют схему с использованием управления транзистором (как показано выше). Однако вместо резистора, который необходимо использовать для ограничения тока, требуется обратный диод защиты (D1).

Когда микроконтроллер (подключенный к «IN»), выдает 1, тогда включается транзистор Q1. Это включает реле RL1, и в результате загорается лампа (R2). Если микроконтроллер выводит 0, то транзистор Q1 отключается, что отключает реле, и поэтому лампа выключается.

Реле очень часто встречаются в схемах, требующих переключения цепей электропитания переменного тока, и доступны для переключения 230В и 13А (подходит для тостеров, чайников, компьютеров и пылесосов).

Пример простого релейного драйвера

Кнопки

При подключении кнопки к микроконтроллеру могут иногда возникнуть простые проблемы. Первая (и самая раздражающая проблема) возникает в виде отскока, когда кнопка посылает много сигналов при нажатии и отпускании.

Кнопки обычно представляют собой кусок металла, который при контакте соприкасается с каким-то другим металлом, но когда кнопки вступают в контакт, они часто отскакивают (хотя они чаще всего крошечные). Этот отскок означает, что кнопка соединяется и отключается несколько раз, прежде чем зафиксироваться, а в итоге – результат, который ненадолго выглядит случайным. Поскольку микроконтроллеры очень быстрые, они могут поймать этот отскок и выполнять события нажатия кнопки несколько раз. Чтобы избавиться от отскока, можно использовать схему ниже. Схема, показанная здесь, представляет собой очень тривиальную схему, которая хорошо работает и проста в построении.

Защита входа: напряжение

Не все устройства ввода будут дружественными к вашему микроконтроллеру, а некоторые источники могут даже нанести ущерб. Если у вас есть источники входного сигнала, которые поступают из окружающей среды (например, датчик напряжения, датчик дождя, человеческий контакт) или источники входного сигнала, которые могут вывести напряжения, превышающие то, что может обрабатывать микроконтроллер (например, цепи индуктора), тогда вам потребуется включать некоторую защиту ввода напряжения. Схема, показанная ниже, использует 5V стабилитронов для ограничения входных напряжений, так что входное напряжение не может превышать 5 В и ниже 0 В. Резистор 100R используется для предотвращения слишком большого тока, когда диод Зенера захватывает входное напряжение.

Пример защиты ввода напряжения

Защита ввода/вывода: ток

Входы и выходы микроконтроллеров иногда могут быть защищены от слишком большого тока. Если устройство, такое как светодиод, потребляет меньше тока, чем максимальный выходной ток от микроконтроллера, тогда светодиод может быть напрямую подключен к микроконтроллеру. Тем не менее, последовательный резистор будет по-прежнему необходим, как показано ниже, а общие значения последовательных резисторов для светодиодов включают в себя 470 Ом, 1 кОм и даже 2,2 кОм. Серии резисторов также полезны для входных контактов в редких случаях, когда неисправны контакты микроконтроллеров или входное устройство испытывает всплеск выходного тока.

Пример использования резисторов для защиты тока

Преобразователи уровня

В прошлом большинство сигналов в цепи работало бы на одном и том же напряжении, и это напряжение обычно составляло 5 В. Однако с увеличением технологических возможностей современной электроники снижается напряжение на новых устройствах. Из-за этого многие схемы включают смешанные сигналы, в которых более старые части могут работать при напряжении 5 В, в то время как более новые части работают при напряжении 3,3 В.

Хотя многие радиолюбители предпочли бы использовать один уровень напряжения, правда состоит в том, что более старые 5-вольтовые части могут не работать на 3,3 В, в то время как более новые устройства 3,3 В не могут работать при более высоком напряжении 5 В. Если устройство 5V и устройство 3.3V хотят общаться, то требуется сдвиг уровня, который преобразует один сигнал напряжения в другой. Некоторые устройства с напряжением 3,3 В имеют 5 В “толерантность”, что означает, что сигнал 5 В может напрямую подключаться к сигналу 3,3 В, но большинство устройств 5 В не могут переносить 3.3 В. Чтобы охватить оба варианта, приведенные ниже схемы показывают преобразование от 5 до 3,3 В и наоборот.

Примеры преобразователей уровня

Изоляция: Оптоизолятор

Иногда схема, с которой должен взаимодействовать микроконтроллер, может представлять слишком много проблем, таких как электростатический разряд (ESD), широкие колебания напряжения и непредсказуемость. В таких ситуациях мы можем использовать устройство, называемое оптоизолятором, которое позволяет двум цепям общаться, не будучи физически соединенными друг с другом с помощью проводов.

Оптоизоляторы взаимодействуют с использованием света, когда одна цепь излучает свет, который затем обнаруживается другой схемой. Это означает, что оптоизоляторы не используются для аналоговой связи (например, уровни напряжения), но вместо этого для цифровой связи, где выход включен или выключен. Оптоизоляторы могут использоваться как для входов, так и для выходов на микроконтроллеры, где входы или выходы могут быть потенциально опасны для микроконтроллера. Интересно, что оптоизоляторы также могут использоваться для смещения уровня!

Пример использования optoisolation для защиты вашего микроконтроллера

062-Как подключить к микроконтроллеру нагрузку?

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите :). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1-включено, -выключено. Начнем.

1 НАГРУЗКА ПОСТОЯННОГО ТОКА.
Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА. Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн [Om]

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

Читайте также:  Зажигаем на tlc5940

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ. При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
BC547.pdf (Одна Загрузка)

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

Для применения можно порекомендовать мощные транзисторы IRF630, IRF640. Их часто используют и поэтому их легко достать.
IRF640.pdf (17340 Загрузок)

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
ULN2003.pdf (19015 Загрузок)

2 НАГРУЗКА ПЕРЕМЕННОГО ТОКА.
Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы типа BT138.
BT138.pdf (6427 Загрузок)

2.3 Подключение нагрузки при помощи твердотельного реле.
С недавних пор у радиолюбителей появилась очень замечательная штука — твердотельные реле. Представляют они из себя оптические приборы (еще их называют оптореле), с одной стороны, в общем случае, стоит светодиод, а с другой полевой транзистор со светочувствительным затвором. Управляется эта штука малым током, а манипулировать может значительной нагрузкой.

Подключать твердотельное реле к микроконтроллеру очень просто — как светодиод — через резистор.
Достоинства налицо: малые размеры, отсутствие механического износа, возможность манипулировать большим током и напряжением и самое главное оптическая развязка от опасного напряжения. Нагрузка может быть как постоянного, так и переменного тока в зависимости от конструкции реле. Из недостатков следует отметить относительную медлительность (чаще всего для коммутации используется полевик) и довольно значительную стоимость реле.

Если не гнаться за завышенными характеристиками можно подобрать себе прибор по приемлемой цене. Например, реле CPC1030N управляется током от 2мА, при этом способно коммутировать нагрузку переменного и постоянного тока 120мА и 350v (очень полезная для радиолюбителей вещь!)
CPC1030N.pdf (14172 Загрузки)

062-Как подключить к микроконтроллеру нагрузку? : 229 комментариев

Да, он. Спасибо за разъяснение, я просто думал что он рассчитывается как-то по другому из за ёмкости) а не как токоограничивающий. В основном везде пишут якобы 50-150 Ом ставить)

Вопросы в тему))
1. К МК через резистор 3к и тр-р КТ917 (ОЭ) была подключена нагрузка (обмотка) в коллектор. Нагрузка на 12В. Управление по импульсу на выходе МК. Схема не заработала, сгорел порт МК и пришлось поставить вместо обмотки реле на 5В по управлению, а на контакты — нагрузку коммутировал на 12В. Почему не заработала первая схема и почему сгорел порт?
2. В литературе показано, что нагрузки подключают в сток транзисторов MOSFET независимо от типа канала. В модификации http://www.forum.getchip.net/viewtopic.php?f=24&t=495&s > 2.1. Я пробовал включить усилитель TDA в исток по схеме на одном IRF630, но усилитель не заработал, т.к. с потенциалом на ноге Vcc творилось непонятное, значение было ни как не Vcc.
2.2. Почему автор включил усилитель в исток, а не использовал p-канальный транзистор с включением нагрузки в сток?

1 через резистор 3кОм 12 вольт можно подключать смело к ножке МК и порту ничего не станется (12/3000=0.004А при допустимых 0.02А). Причина перегорания порта, скорей всего, в индуктивной нагрузке, на которой создалось значительное ЭДС самоиндукции, ток от которого сжег и транзистор и порт МК. В случае подключения индуктивных нагрузок обязательно применение защитного диода (например, как в п.2.1).

2 по модификации не могу ничего сказать, так как она не моя.

@GetChiper
Евгений,
1. в том то и дело, что транзистор выжил, а сгорел только порт. Нужен ли теперь шунтирующий (защитный) диод на индуктивную нагрузку, которая подключается к +12В и GND с помощью реле для стабилизации (защиты) этого самого источника +12В?
2. Можно ли подключать нагрузку в исток полевых транзисторов?

1 в таком случае я не знаю причину перегорания порта. Защитный диод нужен в любом случае на индуктивной нагрузке (желательно еще и шотки).
2 можно нагрузку включать куда угодно. есть разные способы включения (как и в биполярном транзисторе) https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B5%D0%B2%D0%BE%D0%B9_%D1%82%D1%80%D0%B0%D0%BD%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80

@GetChiper
Евгений, огромное спасибо!

А не задействованые входа ULN2003 нужно соединить с землёй? (например у меня остались 1-2 лишних)

Устройство и работа портов ввода-вывода микроконтроллеров AVR. Часть 3

Подключение транзистора к линии порта ввода/вывода

Изучив данный материал, в котором все очень детально и подробно описано с большим количеством примеров, вы сможете легко овладеть и программировать порты ввода/вывода микроконтроллеров AVR.

Программу писать будем в Atmel Studio 6.0.

Эмулировать схему будем в Proteus 7 Professional.

Максимальный ток, который способен пропустить каждый порт ввода/вывода составляет 40 mA.
Максимальный ток, который способна пропускать каждая линия порта ввода/вывода составляет 20 mA.
Прежде чем подключать нагрузку, в том числе и транзистор к линиям порта ввода/вывода можно спалить его превысив допустимую нагрузку на линию порта ввода/вывода.
Что бы ограничить ток, который протекает через линии порта ввода/вывода микроконтроллера нужно рассчитать и подключить токоограничивающий резистор.

Рис: Рапиновка транзистора n-p-n-типа.

Рис: Рапиновка транзистора p-n-p-типа.

Рис: Подключение к микроконтроллеру транзистора n-p-n-типа.

Рис: Подключение к микроконтроллеру транзистора p-n-p -типа.

Сопротивление токоограничивающего резистора подключаемого к линиям портов ввода/вывода при подключении транзистора рассчитывается по формуле:

Пример:
— включения мощного светодиода через транзисторный ключ.

Рис: Подключение к микроконтроллеру светодиода через транзисторный ключ n-p-n-типа.

Данные на светодиод:
— напряжение источника питания – ;
— прямое падения напряжения на светодиоде – 1,35В(Берётся с datasheet на светодиод);
— прямой ток на светодиоде – 120мА (Берётся с datasheet на светодиод);
— коэффициент надежности роботы светодиода – 75% (Берётся с datasheet на светодиод);

Читайте также:  Простая самодельная солнечная батарея

Данные на транзистор BC547 берем из Datasheet-BC547:

Данные на микроконтроллер:
— напряжение источника питания – ;
— падение напряжения на линии порта ввода/вывода – 0,5В (Берётся с datasheet на микроконтроллер: Vol(output low voltage) – если ток втекает, и Voh (output high voltage) – если ток вытекает);

Рассчитываем сопротивление R1:

Таким образом, номинал резистора R1 = 38.33 Om, подбирается ближайшее большее значение сопротивления, например 39 Ом.

Определив номинал резистора R1, необходимо рассчитать мощность P1, измеряемая в ваттах, которая будет выделяться в резисторе, в виде тепла при протекании тока в цепи.

Рассчитав выделяемую мощность на резисторе, выбираем ближайшее большее значение мощности резистора.

Рассчитываем сопротивление R2:

Таким образом, номинал резистора R2 = 4750 Om, подбирается ближайшее меньшее значение сопротивления, например 4,7 кОм.

Определив номинал резистора R2, необходимо рассчитать мощность P2, измеряемая в ваттах, которая будет выделяться в резисторе, в виде тепла при протекании тока в цепи.

Рассчитав выделяемую мощность на резисторе, выбираем ближайшее большее значение мощности резистора.

— подключения транзистора n-p-n-типа к линии порта ввода/вывода:

— подключения транзистора p-n-p-типа к линии порта ввода/вывода:

Электронная нагрузка для блока питания своими руками

Во время тестирования очередного самодельного или отремонтированного блока питания, чтобы создать нагрузку приходится подключать различные лампочки, мощные резисторы и кусочки спирали от электроплитки. Подбирать нужную нагрузку таким образом очень затратное по времени дело. Чтобы не тратить свое драгоценное время и нервы. Проще собрать простую электронную нагрузку своими руками.

По сути это простое устройство состоящее из мощных транзисторов, позволяющих плавно нагрузить блок питания стабильным регулируемым током.

На этом рисунке изображена схема электронной нагрузки на мощных транзисторах позволяющих нагрузить любой блок питания до 40А.

Схема электронной нагрузки для блока питания

Как работает эта схема? Напряжение с тестируемого блока питания поступает на базу транзистора Т1 через делитель напряжения собранный на резисторах R1, P1 и P2 и ограничительный резистор R2 . Транзистор Т1 управляет четырьмя мощными транзисторами Т2, Т3, Т4 и Т5 выполняющими роль ключей и создающими управляемую нагрузку на блок питания. Для более точной и грубой установки тока нагрузки в схеме имеется два переменных резистора Р1 и Р2. Силу тока нагрузки и напряжение измеряет китайский электронный вольтметр амперметр. Возможна также установка стрелочных приборов на место электронного.

Данная схема рассчитана на входное напряжение до 50В и силу тока до 40А. Если вы хотите увеличить силу тока добавьте в схему необходимое количество транзисторов TIP36C и шунтирующих резисторов 0.15 Ом 5 Вт. Каждый добавленный транзистор увеличивает силу тока на 10А.

В процессе работы транзисторы Т2, Т3, Т4 и Т5 очень сильно нагреваются, по этому требуются хорошее охлаждение. Установите каждый транзистор на большой радиатор размером 100х63х33 мм без изоляционных прокладок потому, что коллекторы транзисторов на схеме все равно соединены вместе.

Радиаторы охлаждаются двумя мощными вентиляторами 120х120 мм. Которые питаются от отдельного блока питания через стабилизатор напряжения L7812CV, также отсюда питается китайский вольтметр амперметр. Транзистор Т1 и стабилизатор напряжения L7812CV установлены на отдельном небольшом радиаторе от компьютерного блока питания, чтобы не мешать силовым транзисторам работать.

С помощью этого простого и надежного устройства легко нагружать и тестировать любые трансформаторные и импульсные блоки питания, а также аккумуляторы и другие источники питания.

Надеюсь электронная нагрузка для блока питания будет полезной самоделкой для вашей домашней радио мастерской.

Радиодетали для сборки

  • Транзистор Т1 TIP41, MJE13009, КТ819
  • Транзисторы Т2, Т3, Т4, Т5 TIP36C
  • Стабилизатор напряжения L7812CV
  • Конденсатор С1 1000 мкФ 35В
  • Диоды 1N4007
  • Резисторы R1, R2 1K, R3 2.2K, R4, R5, R6, R7 0.15 Ом 5 Вт, Р1 10К, Р2 1К
  • Радиаторы 4 шт. размер 100х63х33 мм
  • Вентиляторы 2 шт. от компьютера 12В размер 120х120 мм
  • Китайский вольтметр амперметр на 50А с шунтом, можно поставить стрелочный прибор, будет намного точнее и надежнее

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать электронную нагрузку для блока питания

Ионофон или поющая дуга из строчника

Усилитель звука своими руками

Защита от КЗ для блока питания своими руками

Зарядное устройство из компьютерного блока питания

Преобразователь напряжения с 12 на 220В своими руками

Зарядное устройство из импульсного блока питания

70 comments on “ Электронная нагрузка для блока питания своими руками ”

Добрый вечер.Сергей! Шунт с вольт амперметра надо вырезать а на его место подсоединить шунт на 50 А или как?С уважением Иван

Добрый вечер, Иван! Шунт вырезать не надо. Если амперметр рассчитан на 10А то и шунт должен стоять на 10А, при установке шунта на 50А показания прибору будут не правильными.

Спасибо -надо покупать.

Добрый вечер Сергей!Собрал все по вашей схеме но при включении вылетают транзисторы TIP36-не было переменника на 1к поставил на 120 ОМ может из-за него?

Добрый вечер, Иван! Нет, переменник на 1К можно вообще не ставить без него будет работать. Что то не правильно собрано или транзисторы из Китая. У меня такое было прислали партию транзисторов все погорели. Китайцы брак делают. Десять Китайских транзисторов по мощности равны одному оригинальному. Теперь только в Чип и Дипе покупаю там нормальные детали продают.

Уважаемый автор, повторил Вашу конструкцию — за исключением блока питания для кулеров и вольтметра: использовал сетевой адаптер 12V/1A, но не думаю, что это принципиально. Проверял на линейном стабилизаторе L7812 от другого устройства — разницы никакой.

Как нагрузка для БП она работает — тут вопросов нет. Но я не могу разобраться — ток чего именно индицирует амперметр Вашего устройства. Все дело в том, что больше одного ампера с копейками Ваш тестер не показывает — ни при каких тестах: все реальные показатели можно видеть только на индикаторах тестируемого БП. А если придется тестировать, скажем, БП для светодиодной ленты (как у Вас на фото)? У меня, как назло, ничего такого под руками не оказалось.

Словом, осталось непонятным соотношение между показателями ампеража на тестере и на тестируемых БП: как его расценивать. Например, вот этот китайский БП:
aliexpress.ru/item/32913030842.html?spm=a2g0s.9042311.0.0.274233edJzpZ3X
четко демонстрирует свои предельные параметры под нагрузкой Вашим тестером — 24V/6A, но видно их именно индикаторе VA, установленном там же, где и этот китайский БП, то есть в самодельном лабораторном БП (индикатор, кстати, точно такой же, как и на Вашем тестере). А на самом тестере в это время — меньше 1 A. Короче говоря, осталось непонятным: ток чего именно показывает тестер. Единственное, что более-менее соответствует, так это напряжение. Естественно, есть зависимость роста тока от напряжения, однако все в тех же указанных пределах. Проверял и такой же адаптер, которым запитал конструкцию: вольтаж 12V соответствует, но до номинального 1A даже близко не дотягивает: максимум 200mA. Проверял тот БП, где стоит L7812: раскачивается до 400mA, хотя этот линейный стабилизатор имеет максимум 1.5A. Нагрев ключей не измерял, но наощупь он где-то соответствует току.

Проверял Вашим тестером вот этот БП:
aliexpress.ru/item/4000125945816.html?spm=a2g0s.9042311.0.0.274233edhYLScD
Его можно «раскачать» тестером до предельных значений. Но опять же: при 30V/10 A на индикаторе тестера — аж 1,12 A. Наверное, я в чем-то не разобрался — помогите :).

Все дело в Китайских электронных вольтметрах. Если подключить к электронной нагрузке блок питания со встроенным Китайским вольтметром то показания двух приборов на БП и на ЭН будут отличаться в два раза. Выход из этой ситуации только в установке аналоговых стрелочных приборов на Электронную нагрузку или на время теста отключать вольтметр в тестируемом БП.

Заказал стрелочник у китайцев на 10А: посмотрю, что получится. Но есть мысль, что причина в шунте: обычно их рассчитывают в пределах от 1:99 (скажем, для миллиамперметра) до 5-6 раз — как в нашем случае. Кроме того, в китайском цифровике свой шунт на 10А, поэтому львиная доля тока просто течет мимо индикатора — ведь на проверяемых БП точно такие же индикаторы показывают вполне достоверные цифры. Видимо, здесь требуется какой-то другой расчет шунта, учитывающий «растекание» по параллельным цепям. А так нагрузка очень даже удобная. В конце концов, никто ведь не запрещает последовательного включения амперметра в мультиметре: я так и сделал, получив вполне реальные цифры тока. Правда, мультиметры, позволяющие измерять более 20А, мне не попадались.

По ходу конструирования пришла мысль использовать систему охлаждения устройства для китайских резисторов 4Ом/100Вт, обычно используемых для проверки УНЧ. Электрически с основной схемой они не связаны — просто добавлены к радиаторам и кулерам. Поставил 4 шт., что дает возможность комбинировать нагрузку перемычками на клеммах: например, два канала по 8 Ом/50 Вт или 2 Ом/200 Вт — рекомендую облегчить себе жизнь :). Это резисторы такого вида: aliexpress.ru/item/33026780964.html?spm=a2g0s.9042311.0.0.264d33edl5qQU1

Стрелочный прибор намного точнее будет, особенно если класс точности 2,5. Резисторы с радиаторами очень мощные. В Китае стоят не дорого. В наших магазинах цены как на золото.

Здравствуйте. Проводом какого сечения следует перейти от транзисторов к клеммам для проверки БП? То есть какой ток протекает в цепи коллекторов транзисторов Т2-Т5? Если задействовать все 40 ампер, то вопрос становится актуальным. И желательно указать мощность резистора R3. Спасибо.

Добрый вечер! Сечение провода от связки транзисторов до БП должно быть 4 мм/кв. Ток будет протекать по 10А на каждый транзистор. Резистор R3 мощностью 0.25 Вт будет достаточно.

Здравствуй Сергей! Я по поводу переделки Вашей схемы?! Как то попали ко мне транзисторы MJ11032_11033! Комплементпрная пара! Характеристики идеальные для создания электронной нагрузки. Правда они по схеме Дарлингтона! Но в Интернете я встречал схему электронной нагрузки на Дарлингтонах! По моему были собраны на КТ827, или КТ825!? Так вот вопрос тебе как Доку, можно ли применить из в электронной нагрузке. Все же по Datasheet, у него рассеиваемая мощность аж 300 Вт.

Добрый вечер, Лестанбек! В электронной нагрузке работать будут.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector