""

Кварцованный передатчик на 433 мгц 10 мвт

Кварцованный передатчик на 433 МГц 10 мВт

Сигнал с микрофона, усиленный транзистором VT1, через резистор R4 подается на варикап VD1, который служит для модуляции кварцевого генератора, построенного на VT2. Модуляция производится затягиванием частоты кварца ZQ1 варикапом, емкость которого изменяется в такт входным сигналам. Рабочая точка варикапа определяется резистором R2. Катушка L1 компенсирует емкость варикапа в режиме отсутствия модуляции.

Выходной контур генератора L2C3 настроен на первую гармонику кварца 54 МГц. Каскад удвоения частоты, собранный на транзисторе VT3, работает по схеме с общей базой и индуктивно связан через катушку L3. Колебательный контур L4C6 в цепи коллектора транзистора настроен на частоту 108 МГц. Раскачку транзистора VT3 можно регулировать с помощью подстроечника катушек L2L3. Этот каскад одновременно работает и в качестве оконечного усилителя, работая в режиме С, а гармоника колебательного контура L4C6 управляет работой выходной цепи которая умножает частоту раскачки до 432 МГц. Умножение частоты в последнем каскаде производят с помощью варикапа VD2, работающего при связи по току (параллельное включение), который устанавливают в согласную цепочку. Такая схема обеспечивает КПД порядка 55% и не требует жесткого выдерживания номиналов элементов.

Последовательный колебательный контур C8L5, настроенный на частоту 108 МГц, обеспечивает эффективную раскачку варикапа и за счет этого повышает КПД схемы. Сопротивление шунтирующего резистора R10 определяет рабочую точку варикапа, через него проходит ток, выпрямленный при детектировании. Его сопротивление, составляющее 30. 200 кОм, подбирают опытным путем.

При помощи LC – цепочки L6C9 контур Целлера, настроенный на частоту 324 МГц, согласуются с выходом каскада, где происходит смешение частот, приводящее к суммированию и вычитанию высших гармоник. В результате дополнительно к составляющей высшей гармоники 4*f2-432 МГц образуется дополнительная составляющая f2+3f2=108+324=432 МГц, что еще больше повышает КПД выходной цепи. Необходимая высшая гармоника 432 МГц отфильтровывается цепочкой L7C10C11 и подается в антенну.

Настройка передатчика требует довольно большего терпения. Все контуры выходной цепи оказывают взаимное влияние на согласование и резонансные частоты друг друга. Чтобы оптимально настроить передатчик, все конденсаторы должны быть переменными, при этом можно использовать абсорбционный волномер, индикаторную лампочку (2,5 В, 0,7 А) с катушкой связи (2 витка) и измеритель напряженности поля. Настройка оконечного каскада должна выявить отсутствие каких либо скачков (потребляемого тока, напряженности поля), которые являются признаком присутствия нежелательных колебаний. Резонансы во всех точках должны быть устойчивыми.

Если во время настройки выявлены точки нежелательных резонансов, то устранить их можно несколькими способами: 1) экранированием каскадов для уменьшения паразитных связей. 2) изменением емкостей блокировочных конденсаторов. 3) снижением рабочей добротности колебательного контура. 4) применением емкостных связей вместо индуктивных.

Посредством оптимальной настройки выходной цепи получают максимальную мощность высшей гармоники. При этом варикап не должен быть перегружен термически и по напряжению. Нагрузка варикапа должна составлять максимум 30% мощности насыщения.

В качестве варикапа VD2 желательно использовать приборы типа КВ901, КВ102, КВ104, КВ107, КВ110. Антенна кусок многожильного провода длинной 170 мм.

Катушка L1 имеет 15 витков провода ПЭВ 0,25 мм, намотанных на оправе 4 мм. Катушка L2 имеет 5 витков такого же провода, намотанных на каркасе диаметром 6 мм, поверх нее наматывают катушку L3 – 2 витка провода 0,25 мм. Внутрь каркаса вставлен ферритовый сердечник. Катушки L4, L5 имеют 3,5 и 7 витков соответственно, намотанных посеребренным проводом диаметром 0,36 мм на оправках диаметром 6 мм. Катушки L6, L7 имеют 3,5 и 2 витка соответственно, намотанных посеребренным проводом диаметром 0,56 мм на оправках диаметром 6 мм.

RF РАДИОМОДУЛИ НА 433 МГЦ

Как организовать цифровую связь, используя дешевые, по ценам eBay, RF модули 433/315 МГц, вы узнаете из этого небольшого обзора. Эти радиомодули обычно продают в паре – с одним передатчиком и одним приемником. Пару можно купить на eBay по $4, и даже $2 за пару, если вы покупаете 10 штук сразу.

Большая часть информации в интернете обрывочна и не очень понятна. Поэтому мы решили проверить эти модули и показать, как получить с их помощью надежную связь USART -> USART.

Распиновка радиомодулей

В общем, все эти радиомодули имеют подключение 3 основных контакта (плюс антенна);

Передатчик

  • Напряжение vcc (питание +) 3В до 12В (работает на 5В)
  • GND (заземление -)
  • Приём цифровых данных.

Приемник

  • Напряжение vcc (питание +) 5В (некоторые могут работать и на 3.3 В)
  • GND (заземление -)
  • Выход полученых цифровых данных.

Передача данных

Когда передатчик не получает на входе данных, генератор передатчика отключается, и потребляет в режиме ожидания около нескольких микроампер. На испытаниях вышло 0,2 мкА от 5 В питания в выключенном состоянии. Когда передатчик получает вход каких-то данных, он излучает на 433 или 315 МГц несущей, и с 5 В питания потребляет около 12 мА.

Передатчик можно питать и от более высокого напряжения (например 12 В), которое увеличивает мощность передатчика и соответственно дальность. Тесты показали с 5 В питанием до 20 м через несколько стен внутри дома.

Приемник при включении питания, даже если передатчик не работает, получит некоторые статические сигналы и шумы. Если будет получен сигнал на рабочей несущей частоте, то приемник автоматически уменьшит усиление, чтобы удалить более слабые сигналы, и в идеале будет выделять модулированные цифровые данные.

Важно знать, что приемник тратит некоторое количество времени, чтобы отрегулировать усиление, так что никаких “пакетов” данных! Передачу следует начинать с “вступления” до основных данных и затем приемник будет иметь время, чтобы автоматически настроить усиление перед приёмом важных данных.

Тестирование RF модулей

При испытаниях обоих модулей от +5В источника постоянного тока, а также с 173 мм вертикальной штыревой антенной. (для частоты 433,92 МГц это “1/4 волны”), было получено реальных 20 метров через стены, и тип модулей не сильно влияет на эти тесты. Поэтому можно предположить, что эти результаты типичны для большинства блоков. Был использован цифровой источник сигнала с точной частотой и 50/50 скважностью, это было использовано для модуляции данных передатчика.

Обратите внимание, что все эти модули, как правило, стабильно работают только до скорости 1200 бод или максимум 2400 бод серийной передачи, если конечно условия связи идеальные (высокий уровень сигнала).

Выше показан простой вариант блока для последовательной передачи информации микроконтроллеру, которая будет получена с компьютера. Единственное изменение – добавлен танталовый конденсатор 25 В 10 мкф на выводы питания (Vcc и GND) на оба модуля.

Вывод

Множество людей используют эти радиомодули совместно с контроллерами Arduino и другими подобными, так как это самый простой способ получить беспроводную связь от микроконтроллера на другой микроконтроллер, или от микроконтроллера к ПК.

Обсудить статью RF РАДИОМОДУЛИ НА 433 МГЦ

Теория создания вечного двигателя – правда или вымысел?

Схема и описание сборки преобразователя напряжения бортовой сети автомобиля 12В в переменное сетевое – 220В.

Читайте также:  Технология снижения выбросов сероводородных соединений аккумуляторов

Записки программиста

О работе пультов и радиомодулей на 433 МГц

18 сентября 2017

В сети можно найти массу примеров использования радиомодулей на 433 МГц совместно с Arduino. Обычно эти примеры ограничиваются чем-то вроде «а давайте подключим библиотеку VirtualWire, воспользуемся парой процедур из нее, и опа, все магическим образом работает». Само собой разумеется, меня такое положение дел не устраивает, потому что я хочу знать точно, как эти модули общаются с Arduino, и что именно они передают в эфир. Давайте же во всем разберемся!

Так выглядят классические радиомодули на 433 МГц:

На фото слева находится передатчик, а справа — приемник. Модули осуществляют одностороннюю связь. Для двусторонней потребуется два приемника и два передатчика. На AliExpress комплект из двух передатчиков и двух приемников обойдутся вам в районе 2$ с доставкой, или даже дешевле.

Как ни странно, в пределах одной комнаты модули вполне сносно обмениваются данными без каких-либо антенн. Однако для лучшей работы антенны к ним лучше припаять. В качестве антенны можно использовать медный провод длиной 1/4 длины волны, то есть, в нашем случае, около 17 сантиметров. Это будет так называемая штыревая антенна. В качестве альтернативы можно использовать цилиндрические спиральные антенны. Они существенно короче штыревых антенн (4-15% длины волны), правда и радиус действия у них меньше. Как вы можете видеть по фото, я решил использовать штыревые антенны. Штыревая антенна и цилиндрическая спиральная антенна являются частными случаями монополя.

Fun fact! Существуют другие, но совместимые передатчики на 433 МГц, в частности раз и два. Кроме того, есть и альтернативный приемник. Но он не вполне совместим, так как на выходе всегда выдает какой-то сигнал, независимо от того, осуществляется ли реально сейчас передача, или нет.

Для своих экспериментов я также использовал купленный на eBay пульт от гаража с внутренним DIP-переключателем:

При некотором везении такие пульты все еще можно найти как на eBay, так и на AliExpress по запросу вроде «garage door opener 433mhz with dip switch». Но в последнее время их вытесняют «программируемые» пульты, умеющие принимать и копировать сигнал других пультов. Доходит вплоть до того, что продавцы высылают пульты без DIP-переключателя даже в случае, если он явно изображен на представленном ими фото и указан в описании товара. Полагаться на внешнюю схожесть пульта с тем, что использовал я, также не стоит. Впрочем, если вы решите повторить шаги из этой заметки, наличие или отсутствие DIP-переключателя не сыграет большой роли.

Модули крайне просто использовать в своих проектах:

Как приемник, так и передатчик, имеет пины VCC, GND и DATA. У приемника пин DATA повторяется дважды. Питаются модули от 5 В. На фото слева собрана схема, в который светодиод подключен к пину DATA приемника. Справа собрана схема с передатчиком, чей пин DATA подключен к кнопке и подтягивающему резистору. Плюс в обоих схемах используется стабилизатор LM7805. Проще некуда.

Fun fact! Один из способов угона автомобилей или кражи из них ценных вещей заключается в том, чтобы во время, когда водитель ставит автомобиль на сигнализацию, глушить несущую пульта от сигнализации, те самые 433 МГц. Водитель в спешке может на заметить, что машина не мигнула фарами, и оставить ее без сигнализации. Приведенная выше схема с приемником и светодиодом в сущности является вполне законченным устройством, определяющим, не глушит ли кто-нибудь соответствующие частоты.

При нажатии на кнопку светодиод загорается. Если посмотреть на сигнал, выдаваемый приемником, с помощью осциллографа, он будет выглядеть как-то так:

Вскоре после отпускания кнопки на какое-то время появляется, и затем исчезает, шум. Сказать по правде, мне этот эффект не совсем понятен. Он может возникать в результате дребезга контактов, либо просто потому что модули не рассчитаны на продолжительную передачу постоянного сигнала.

Если же попробовать понажимать кнопки на пульте, светодиод замигает. Осциллограмма при этом будет примерно следующей:

Можно заметить явное соответствие между полученным сигналом, и положением DIP-переключателей в пульте в сочетании с нажатой кнопкой. Это соответствие иллюстрирует следующая табличка, где точка представляет короткий сигнал на осциллограмме, а тире — длинный:

Как видите, каждый бит информации передается дважды. К сожалению, на данном этапе нельзя с полной уверенностью сказать, то ли это особенность работы приемника, то ли пульт действительно так передает данные, например, для борьбы с помехами. Понять, что же действительно происходит в эфире, нам поможет Software-Defined Radio. Я лично использовал LimeSDR, но в данном конкретном случае подойдет, пожалуй, любая железка, в том числе и RTL-SDR. Тема SDR ранее подробно рассматривалась в заметке Начало работы с LimeSDR, Gqrx и GNU Radio.

Запишем сигнал при помощи Gqrx и откроем получившийся файл в Inspectrum:

Здесь мы видим такие же короткие и длинные сигналы, что нам показал осциллограф. Кстати, такой способ кодирования сигнала называется On-Off Keying. Это, пожалуй, самый простой способ передачи информации при помощи радиоволн, который только можно вообразить.

Используя GNU Radio, можно пойти чуть дальше, и построить зависимость амплитуды сигнала от времени. Соответствующий проект (исходники на GitHub):

Запускаем, и на Scope Plot видим:

Практически такой же сигнал, что нам показал осциллограф!

Как видите, копеечные радиомодули на 433 МГц дают нам огромный простор для творчества. Их можно использовать не только друг с другом, но и со многими другими устройствами, работающими на той же частоте. Можно вполне успешно использовать их в чисто аналоговых устройствах без какого-либо микроконтроллера, например, с таймером 555. Можно реализовывать собственные протоколы с чексуммами, сжатием, шифрованием и так далее, безо всяких ограничений, скажем, на длину пакета, как у NRF24L01. Наконец, модули прекрасно подходят для broadcast посылки сообщений.

А какие потрясающие применения этим радиомодулям приходят вам на ум?

Кварцованный передатчик на 433 мГц 10 мВт

Сигнал с микрофона ВМ1, усиленный транзистором VT1, через резистор R4 подается на варикап VD1 который служит для модуляции кварцевого генератора, построенного на VT2 (см. рис. 3.5). Модуляции производится затягиванием частоты кварца ZQ1 варикапом, емкость которого изменяется в такт с входным сигналом. Рабочая Точка варикапа определяется резистором R2. Катушка L1 компенсирует емкость варикапа в режиме отсутствия модуляции.

Выходной контур генератора L2C3 настроен на nepвую гармонику кварца 54 мГц.

Каскад удвоения частоты, собранный на транзистор VT3, работает по схеме с общей базой и индуктивно связан с генератором через катушку L3. Колебательный контур L4C6 в цепи коллектора транзистора настроен на частоту 108 мГц. Раскачку транзистора VT. можно регулировать с помощью подстроечника катушек L2L3.

Этот каскад одновременно работает и в качестве оконечного усилителя, работая в режиме С, а гармоника колебательного контура L4C6 управляет работой выходной цепи, которая умножает частоту раскачки до 432 мГц.

Умножение частоты в последнем каскаде производят с помощью варикапа VD2, работающего при связи по току ( параллельное включение ), который устанавли-вают в согласующую цепочку. Такая схема включения обеспечивает КПД порядка 55 процентов и не требует жесткого выдерживания номиналов элементов. Последовательный колебательный контур C8L5, настроенный на частоту 108 мГц, обеспечивает эффек-тивную раскачку варикапа и за счет этого повышает КПД схемы. Сопротивление шунтирующего резистора R10 определяет рабочую точку варикапа, через него проходит ток, выпрямленный при детектировании. Его сопротивление, составляющее 30. 200 кОм, подбирают опытным путем.

Читайте также:  Будущее солнечных панелей

При помощи LC- цепочки L6C9 контур Целлера, настроенный на частоту 324 мГц, согласуется с выходом каскада, где происходит смешение частот, приво-дящее к суммированию и вычитанию высших гармоник. В результате дополнительно к составляющей высшей гармоники 4 * f2 = 432 мГц образуется дополнительная составляющая f2 + 3f2 = 108 + 324 = 432 мГц, что еще больше повышает КПД выходной цепи. Необходимая высшая гармоника 432 мГц отфильтровывается цепочкой L7C10C11 и подается в антенну. Настройка передатчика требует довольно большого терпения. Все контуры выходной цепи оказывают вза-имное влияние на согласование и резонансные час-тоты друг друга. Чтобы оптимально настроить пере-датчик, все конденсаторы должны быть переменными, при этом можно использовать абсорбционный волномер, индикаторную лампочку (2,5 В, 0,07 А) с катушкой связи (2 витка ) и измеритель напряженности поля.

Настройка оконечного каскада должна выявить отсутствие каких – либо скачков ( потребляемого тока, напряженности поля ), которые являются признаком присутствия нежелательных колебаний. Резо-нансы во всех точках должны быть устойчивыми. Если во время настройки выявлены точки нежелательных резонансов, то устранить их можно несколькими способами:

экранированием каскадов для уменьшения паразитных связей

изменением емкостей блокировочных конденсаторов

снижением рабочей добротности колебательного контура

применением емкостных связей вместо индуктивных

Посредством оптимальной настройки выходной цепи получают максимальную мощность высшей гармоники. При этом варикап не должен быть перегружен термически и по напряжению. Нагрузка варикапа должна составлять максимум 30 % мощности насыщения.

В качестве варикапа VD2 желательно использовать приборы типа КВ901, КВ102, КВ104, КВ107, КВ110. Антенна – кусок многожильного провода длиной 170 мм.

Катушка L1 имеет 15 витков провода ПЭВ 0,25 мм, намотанных на оправке диаметром 4 мм.

Катушка L2 имеет 5 витков такого же провода, намотанных на каркасе диаметром 6 мм, поверх нее наматывают катушку L3 – 2 витка провода 0,25 мм. Внутрь каркаса вставлен ферритовый сердечник.

Катушки L4, L5 имеют 3,5 и 7 витков соответственно, намотанных посеребренным проводом диаметром 0,361 мм на оправках диаметром 6 мм.

Катушки L6, L7 имеют 3,5 и 2 витка соответственно, намотанных посеребренным проводом диаметром 0,56 мм на оправках диаметром 6 мм.

Обзор сравнение доступных приемников и передатчиков диапазона 433 MHz для поделок

  • Цена: $4.22 за 2 штуки
  • Перейти в магазин

Я уже писал про использование приемников и передатчиков работающих в диапазоне 433 МГц применительно к своим поделкам. В этот раз хотелось бы сравнить их разные вариации и понять есть ли между ними разница, и какие предпочтительней. Под катом конструирование тестового стенда на базе arduino, немного кода, собственно, тесты и выводы. Любителей электронных самоделок приглашаю под кат.

Лежат у меня разные приемники и передатчики данного диапазона, решил обобщить и классифицировать данные устройства. Тем более, что в конструировании устройств без радиоканала обойтись довольно сложно, особенно если поделка не должна находиться в стационарном положении. Кто-то возможно возразит, что сейчас довольно немало решений на wi-fi и стоит использовать их, однако, отмечу что не везде их использование целесообразно, к тому же иногда не хочется мешать себе и соседям занимая столь ценный частотный ресурс.

В общем, это все лирика, перейдем к конкретике, сравнению подлежат следующие устройства:
Самый распространенный и дешевый комплект передатчика и приемника:

Купить можно, например, тут, стоит $0.65 за приемник вместе с передатчиком. В моих прошлых обзорах использовался именно он.

Следующий комплект позиционируется как более качественный:

Продается тут за $2.48 в комплекте с антеннками пружинками для данного диапазона.

Собственно предмет обзора, продается отдельно в виде приемника:

Следующее устройство участвующее в данном мероприятии является передатчиком:

Где конкретно я его купил — не помню, впрочем, не так важно.

Для того чтобы обеспечить равные условия всем участникам припаяем одинаковые медные антеннки в виде спирали:

Также, я припаял выводы для вставки в макетку.

Для экспериментов потребуются две отладочные платы arduino (я взял Nano), две макетные платы, провода, светодиод и ограничивающий резистор. У меня получилось так:

Для тестов я решил использовать библиотеку RC-Switch, ее нужно распаковать в каталог ‘libraries’ установленной среды arduino IDE. Пишем нехитрый код передатчика, который будет стоять стационарно:

Пин данных передатчиков будем подключать к выходу 10 arduino. Передатчик будет каждые 5 секунд посылать в эфир цифру 5393.

Код приемника немного более сложный, из-за подключения внешнего диода через ограничительный резистор к выводу 7 arduino:

Приемник подключен к выводу 2 arduino Nano (в коде используется mySwitch.enableReceive(0), так как вход 2 соответствует 0-му типу прерывания). Если принята та цифра которая отправлялась, то на секунду мигнем внешним диодом.

Благодаря тому, что все передатчики имеют одинаковую распиновку, в ходе эксперимента их можно будет просто менять:

У приемников ситуация аналогична:


Для обеспечения мобильности приемной части я использовал пауэр банк. Первым делом, собрав схему на столе, убедился, что приемники и передатчики работают в любом сочетании друг с другом. Видео теста:

Как видно, из-за малой нагрузки пауэр банк через некоторое время отключает нагрузку, и приходится нажимать кнопку, это тестам не помешало.

Вначале про передатчики. В ходе эксперимента выявлено, что разницы между ними нет, единственное, безымянный, маленький подопытный работал немного хуже своих конкурентов, вот этот:

При его использовании расстояние уверенного приема сокращалось на 1-2 метра. Остальные передатчики работали абсолютно одинаково.

А вот с приемниками все оказалось сложнее. Почетное 3-е место занял приемник из этого комплекта:

Он начал терять связь уже на 6 метрах в пределах прямой видимости (на 5 метрах — при использовании аутсайдера среди передатчиков)

Второе место занял участник из самого дешевого комплекта:

Уверненно принимал на 8-ми метрах в пределах прямой видимости, 9-ый метр осилить не удалось.

Ну и рекордсменом стал предмет обзора:

Доступный участок прямой видимости (12 метров) оказался для него легкой задачей. И я перешел к приему через стены, итог 4 капитальные бетонные стены, при расстоянии порядка 40 метров — он принимал уже на грани (шаг вперед прием, шаг назад светодиод молчит). Таким образом, предмет обзора однозначно могу рекомендовать к покупке и использованию в поделках. При его использовании можно при равных расстояниях снижать мощность передатчика, либо при равных мощностях увеличивать расстояние уверенного приема.

Согласно рекомендациям, увеличить мощность передачи (а следовательно и расстояние приема) можно повышая напряжение питания передатчика. 12 Вольт позволило увеличить исходное расстояние на 2-3 метра в пределах прямой видимости.

На этом заканчиваю, надеюсь информация окажется кому то полезной.

Беспроводной передатчик на 433 МГц

  • Офис находится в 5 минутах ходьбы от м. Таганская, по адресу Большой Дровяной переулок, дом 6.
  • При оформлении до 15:00 в будний день заказ можно забрать после 17:00 в тот же день, иначе — на следующий будний день после 17:00. Мы позвоним и подтвердим готовность заказа.
  • Получить заказ можно с 10:00 до 21:00 без выходных после его готовности. Заказ будет ждать вас 3 рабочих дня. Если хотите продлить срок хранения, просто напишите или позвоните.
  • Запишите номер своего заказа перед визитом. Он необходим при получении.
  • Чтобы к нам пройти, предъявите на проходной паспорт, скажите, что вы в Амперку, и поднимитесь на лифте на 3-й этаж.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • бесплатно
Читайте также:  Автоматический блок управления электрокоптильней

Доставка курьером по Москве

  • Доставляем на следующий день при заказе до 20:00, иначе — через день.
  • Курьеры работают с понедельника по субботу, с 10:00 до 22:00.
  • При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • бесплатно

Доставка в пункт самовывоза

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint.
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • Доставляем через день при заказе до 20:00, иначе — через два дня.
  • Курьеры работают с понедельника по субботу, с 11:00 до 22:00.
  • При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 350 ₽

Доставка в пункт самовывоза

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint.
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint.
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • Доставка осуществляется до ближайшего почтового отделения в любом населённом пункте России.
  • Тариф и сроки доставки диктует «Почта России». В среднем, время ожидания составляет 2 недели.
  • Мы передаём заказ Почте России в течение двух рабочих дней.
  • Оплатить заказ можно наличными при получении (наложенный платёж) или же онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время заказа и в среднем должна составить около 400 рублей.
  • Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
  • Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4–5 дней.
  • Мы передаём заказ в EMS в течение двух рабочих дней.
  • Оплатить заказ можно только онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400–800 рублей для России и 1500–2000 рублей для стран СНГ.
  • Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
  • Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4–5 дней.
  • Мы передаём заказ в EMS в течение двух рабочих дней.
  • Оплатить заказ можно только онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400–800 рублей для России и 1500–2000 рублей для стран СНГ.

Товары из офиса нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Офис находится в 5 минутах ходьбы от м. Таганская, по адресу Большой Дровяной переулок, дом 6.

Товары из магазина-мастерской нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Магазин-мастерская находится в трёх минутах пешком от метро Лиговский Проспект, на территории пространства «Лофт Проект Этажи», по адресу Лиговский проспект 74Д.

Хотите собрать недорогую охранную сигнализацию с большим количеством беспроводных датчиков? Или может быть вам требуется сделать дешёвый пульт дистанционного управления? Воспользуйтесь беспроводными модулями, для работы которых не требуется даже микроконтроллер.

Модули парные. Данный модуль выполняет функцию только передатчика. Для приёма его сигнала существует модуль-приёмник на 433 МГц.

Модуль имеет всего 4 контакта: питание, земля, цифровой вход и антенна.

Никакого протокола передачи не предусмотрено: модуль просто передаёт восходящие и нисходящие фронты, поступающие на вывод «Data in». Это позволяет подключать к модулю напрямую даже такие простые источники сигнала, как кнопка или геркон. Ещё примера ради: задействовав датчик Холла, вы можете напрямую передавать частоту оборотов вращающегося предмета, причём потребление питания будет происходить только в моменты прохождения магнита мимо датчика.

Модулю не требуется время, чтобы запуститься или установить соединение. После подачи питания он сразу готов к работе.

Помимо сборки дешёвых, неинтеллектуальных датчиков, у модулей этого типа есть ещё одно применение: вне города они обладают бо́льшей дальностью связи, чем те же Bluetooth-модули — до 150 метров. В городе, как правило, частоты диапазона 433 МГц перегружены и на таком расстоянии сигнал смешается с сигналами десятка других источников.

Подключение антенны не обязательно. Но с ней дальность связи становится значительно больше.

Модуль имеет штырьковые контакты с шагом 2,54 мм, что позволяет вставлять его в макетную плату.

Комплектация

В комплект не входят провода. Для подключения к управляющей электронике используйте трёхпроводной шлейф, макетные провода с разъёмами «мама» на стороне модуля или макетную плату.

Рейтинг
( Пока оценок нет )
Загрузка ...
×
×
Adblock
detector