Переключатель нагрузки верхнего плеча с мощным 3a полевым транзистором

Содержание

Рубрикатор

События

Наши новости

Новости

Подписка на новости

Опрос

Нужны ли комментарии к статьям? Комментировали бы вы?

Реклама

Советы по управлению затвором мощного полевого транзистора

Ридли Рэй

Перевод: Иоффе Дмитрий

В этой статье мы возвращаемся к основам разработки преобразователя напряжения — как включить и как выключить мощный полевой транзистор (ПТ) в современном источнике питания с DC/DC преобразователем напряжения.

Непосредственное управление от контроллера ШИМ

В большинство современных микросхем контроллеров встроен выходной управляющий каскад. Обычно он содержит двухтактную схему на двух транзисторах. Этот выход можно использовать для непосредственного управления затвором мощного полевого транзистора, как показано на рис. 1.

Непосредственное подключение можно использовать в тех случаях, когда управляющая схема подключена к той же самой «земле», что и силовая часть, и уровень мощности относительно невелик.

Судя по справочным данным, ток в несколько ампер можно получить прямо с выхода контроллера ШИМ. Этого вполне достаточно для управления маломощными устройствами. Однако вход полевого транзистора имеет большую емкость. Кроме того, пытаться полностью использовать весь выходной ток контроллера, как правило, — плохая идея. Это может привести к увеличению электромагнитных помех из–за быстрого включения и выключения, непомерным потерям на обратное восстановление в выпрямителе и шумам в самом контроллере ШИМ. В результате могут возникать случайные сбои в работе и дрожание тактовой частоты.

Лучшее решение — ограничить выходной ток контроллера ШИМ при помощи схемы, показанной на рис. 2. В ней используются два резистора: один для управления временем включения, а другой — для управления временем выключения. (Обычно мы выключаем устройство быстрее, чем включаем, для защиты от коротких импульсов тока.) Диод служит для разделения этих двух функций, но в некоторых случаях, когда критично быстродействие схемы, можно обходиться без него.

В маломощных преобразователях мы обычно включаем ПТ медленно. Не надо бояться экспериментов с величиной сопротивления резистора Ron. Автор использует в своих проектах значения от 1 Ом до 1 кОм. Сформулированное им правило разработки заключается в том, чтобы увеличивать сопротивление, одновременно наблюдая за осциллограммами переключения и рассеиваемой мощностью ПТ. Если температура начинает заметно возрастать, нужно уменьшить величину сопротивления вдвое. Вы будете удивлены, увидев, как медленно можно включать ПТ в обратноходовом преобразователе, работающем в режиме прерывистых токов, без значительных потерь на переключение.

Выключение должно быть быстрым, чтобы обеспечить быстрый спад импульса тока. Экспериментируйте с разными значениями сопротивления, вместо того, чтобы просто использовать величины, приведенные в руководствах по применению. Более подробную информацию о том, насколько быстро можно управлять ПТ, можно найти в работе[3].

Специализированные драйверы затворов

При увеличении мощности преобразователя становится ясно, что сопротивления резисторов в затворе ПТ необходимо уменьшить, чтобы минимизировать потери на переключение. Для схем большой мощности в промышленности, как правило, используют микросхемы драйверов с большими выходными токами. При этом уменьшается влияние помех на контроллер ШИМ, и, кроме того, получается более удачная разводка печатной платы. В продаже имеется множество хороших драйверов. Можно даже создать собственный мощный двухтактный драйвер, если необходимо увеличить производительность при снижении цены. Для устройств большой мощности используют отдельную схему драйвера затвора для достижения быстрого переключения (рис. 3). Резисторы в затворе также имеются.

Изолированные драйверы затворов

Для получения очень высоких мощностей разработчики начинают использовать такие топологии, как двухключевой прямоходовый преобразователь, полумостовой или мостовой преобразователи. Во всех этих топологиях необходимо применять плавающий ключ.

Существуют решения этой задачи с использованием полупроводниковых компонентов, но только для низковольтных применений. Интегральные драйверы верхнего плеча не предоставляют разработчику достаточной гибкости, а также не обеспечивают такого уровня защиты, изоляции, устойчивости к переходным процессам и подавления синфазных помех, который дает хорошо спроектированный и изготовленный трансформатор для управления затвором.

На рис. 4 показан самый примитивный способ получения плавающего управления затвором. Выход микросхемы драйвера подключен через разделительный конденсатор к небольшому трансформатору (обычно тороидальному для лучшей производительности). Вторичная обмотка подключена непосредственно к затвору ПТ, и любые замедляющие резисторы должны располагаться со стороны первичной обмотки трансформатора. Обратите внимание на стабилитроны в затворе для защиты от переходных процессов. На выходе драйвера необходимо использовать ограничительные диоды, ими нельзя пренебрегать, даже если при первых испытаниях не возникли проблемы с реактивными токами в трансформаторе.

В простейшей изолированной схеме для управления затвором используется трансформатор, как показано на рис. 4. Ограничительные диоды необходимы для защиты от реактивных токов, а разделительный конденсатор предотвращает насыщение трансформатора. Конденсатор дает сдвиг уровня выходного напряжения драйвера, который зависит от относительной длительности управляющих импульсов.

Схема, представленная на рис. 4, обеспечивает отрицательное напряжение на вторичной обмотке на интервалах времени, когда ПТ выключен. Это значительно увеличивает устойчивость к синфазным помехам, что особенно важно для мостовых схем.

Однако недостаток отрицательного смещения — это уменьшение положительного напряжения, открывающего ПТ. При небольшой относительной длительности импульсов положительный импульс большой. При относительной длительности, равной 50%, половина имеющегося напряжения драйвера теряется. При большой относительной длительности положительного напряжения может не хватить для полного открывания ПТ.

Схемы с трансформаторной развязкой наиболее эффективны при относительной длительности от 0 до 50%. К счастью, именно это и нужно для прямоходовых, мостовых и полумостовых преобразователей.

Обратите внимание: на рис. 5 показано, как напряжение на разделительном конденсаторе смещается под действием низкочастотных колебаний, наложенных на выходные импульсы драйвера. Эти колебания должны тщательно подавляться для обеспечения безопасной работы. Обычно для борьбы с этим явлением увеличивают емкость конденсатора, что уменьшает Q для низкочастотных составляющих. Необходимо проверить работу схемы при всех возможных переходных процессах, особенно при старте, когда конденсатор разряжен.

Осторожно: схема восстановления постоянной составляющей!

Иногда разработчик может столкнуться с высоковольтной схемой, в которой требуется изолированное управление затвором при относительной длительности импульсов около 100%. Раньше для таких применений рекомендовали схему, показанную на рис. 6. Но ее применение может приводить к повреждению источника питания при выключении.

Диод и конденсатор на стороне вторичной обмотки восстанавливают постоянную составляющую на затворе и обеспечивают управление затвором при значениях относительной длительности до 90% и более. Однако у этой схемы есть серьезный недостаток, и использовать ее без очень тщательного анализа не рекомендуется.

Эта схема хорошо работает в установившемся режиме (рекомендуется нагрузочный резистор в затворе), но когда контроллер ШИМ выключается, разделительный конденсатор остается подключенным через трансформатор на неопределенный период времени. Это может привести к насыщению трансформатора, как показано на рис. 6б. Когда трансформатор насыщается, вторичная обмотка замыкается накоротко, и конденсатор на стороне вторичной обмотки может включить ПТ. Насыщение можно предотвратить, если использовать сердечник с зазором и конденсатор небольшой емкости, но при этом увеличится реактивный ток, необходимый для управления затвором, а это вызывает другие проблемы.

Изолированное управление затвором для мостовых преобразователей

Мостовые и полумостовые преобразователи — это устройства, в которых требуется очень надежная изолированная схема управления. В то время как один из ключей закрыт, ключ на другой стороне моста будет открыт. В результате на выключенном устройстве будет присутствовать большое синфазное напряжение.

На рис. 7 показана схема, рекомендуемая для полумостового преобразователя. В ней управлять затворами должны два трансформатора. Не пытайтесь использовать только один трансформатор и схему с тремя состояниями, как советуют в некоторых руководствах по применению!

В мостовом преобразователе, показанном на рис. 8, также требуются два трансформатора для управления затворами. Двойные вторичные обмотки в каждом трансформаторе используются для управления парами ПТ в диагонально противоположных плечах моста. Для обоих типов мостов схемы управления затворами должны тщательно тестироваться во время переходного процесса при включении, когда возникают большие пиковые токи, и отрицательные напряжения на затворах невелики.

В схеме моста с фазовым сдвигом (рис. 9) для управления затворами также используются два трансформатора. Но обратите внимание на отличие: каждая сторона моста работает с фиксированной относительной длительностью 50%, что позволяет использовать один трансформатор с двумя вторичными обмотками противоположной полярности. Это одна из немногих схем, где можно применять биполярную схему управления затвором без снижения надежности. Но выбросы, возникающие во время переходных процессов при выключении, не должны приводить к открытию транзисторов. Обратите внимание на полярность вторичных обмоток.

Заключение

Схема управления затвором — критически важная часть проекта преобразователя. Убедитесь в том, что вы используете правильную схему, и не копируйте вслепую схемы из руководства по применению. Трансформаторы в цепях управления затворами придают вашему проекту такую степень надежности, которую невозможно получить при использовании полупроводниковых решений. Если вы разрабатываете очень мощное устройство, то это важнейшая составляющая. Добавление активных элементов для того, чтобы, согласно общепринятому мнению, увеличить скорость переключения, обычно не дает улучшения общей производительности, но вносит новые возможности для потенциальных отказов. Делайте вашу схему управления затвором как можно более простой.

Читайте также:  Часы на ардуино

Литература

Другие статьи по данной теме:

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

AterLux › Блог › 100% времени открытый nMOSFET в верхнем ключе, или про бутстрап с подкачкой

Полевые МОП-транзисторы с каналом p-типа, которые проще использовать в качестве верхнего ключа, сложнее в изготовлении, по сравнению с их n-канальными сородичами. В результате их выбор достаточно мал, они дороже, а сопротивление сток-исток часто оставляет желать лучшего при значительной ёмкости затвора.

Поэтому часто в качестве верхнего ключа используются транзисторы с каналом n-типа. Однако, управление ими представляет определённую сложность, поскольку для того, чтобы держать затвор открытым, на него необходимо подавать повышенное напряжение.

Одним из подходов является использование драйверов верхнего плеча, с бутстрапной схемой (bootstrap, она же иногда называются бустрапная, или даже бустрэпная, вобщем называют кто во что горазд).
International Rectifier выпускает целую кучу таких драйверов всех размеров и цветов на разный ток и способ подключения, одним из таких драйверов является IR2101 обеспечивающий ток заряда затвора управляемого транзистора до 130, а разряда до 270 миллиампер.

Примерная схема включения вот:

IR2101 собирается в восминогих корпусах dip или so, работает при напряжении питания от 9 до 25 вольт и включает в себя два независимых драйвера: один для нижнего и один для верхнего ключа. При этом управляется логическими уровнями на напряжении от 3 Вольт. В этот драйвер встроена защита по напряжению, и при падении напряжения ниже 8,2 Вольта он перестаёт работать, пока напряжение не поднимется до 8,9 Вольт.

С нижним ключом всё понятно: выход LO в зависимости от логического уровня на входе LIN подключается либо к линии питания Vcc, что обеспечивает заряд затвора управляемого транзистора, либо к “земле” (com) что обеспечивает его разряд.

С верхним ключом всё немного сложнее. Схема имеет два дополнительных входа: VS и VB. Вход VS соединяется с истоком n-канального транзистора, а в такой схеме включения исток обращён к нагрузке. Когда на входе HIN низкий уровень, выход HO соединяется с входом VS и затвор разряжается. Напряжение же для заряда затвора берётся со входа VB. Очевидно, что когда транзистор открыт, напряжение на входе VB должно превышать напряжение питания, чтобы поддерживать затвор открытым.

Чтобы обеспечить повышенное напряжение и используется как раз та самая бутстрапная (бустрепная или как её там) схема, представляющая из себя диод D1 и конденсатор С1.

В тот момент, когда верхний ключ закрыт, конденсатор C1 заряжается через диод D1 и нагрузку, подключенную к транзистору. Когда же транзистор открыт, этот конденсатор своим зарядом обеспечивает то самое повышенное напряжение на входе VB.

О расчёте конденсатора можно почитать вот здесь.

Такой подход накладывает некоторые ограничения на тип нагрузки: например, цепь светодиодов уже не будет работать, поскольку не обеспечит заряд конденсатора.

Кроме того, заряд конденсатора со временем теряется на токи утечки, а значит схема должна работать в импульсном режиме, дабы конденсатор успевал подзаряжаться.

Напряжение в бортовой сети машины может быть использовано как для питания схемы, так и для подключения ключа. Но работа приборов в импульсном режиме, даже с достаточно большим коэффициентом заполнения, не всегда приемлема, да и пульсации тока могут создавать помехи для работы остального оборудования.

Чтобы транзистор был постоянно открыт, необходимо обеспечить подзарядку конденсатора С1. Мне в голову пришла идея как использовать драйвер нижнего ключа этой микросхемы для подзарядки бутстрапного конденсатора:

В схему добавлен диод D2 и конденсатор C2. Когда ключ управляется в импульсном режиме, конденсатор C1 заряжается через оба диода и работает в обычном бутстрапном режиме. Когда же ключ находится в постоянно открытом состоянии, на вход нижнего ключа подаётся меандр, в результате чего конденсатор C2 подключается на “землю”, в результате чего он сам заряжается через D2, после чего конденсатор подключается на линию питания, и через диод D1 поддерживает заряд конденсатора C1.

Важно, чтобы поддерживающий конденсатор был притянут к “земле” на то время, пока транзистор закрыт. Иначе, если он будет притянут к линии питания, то он начнёт заряжать конденсатор C1, который притянут к “земле” нагрузкой. Как следствие на конденсаторе C1 появится удвоенное напряжение, которое может превысить максимально допустимое для затвора транзистора няпряжение.

Для простоты оба входа можно подключить к ШИМ-выходам одного таймера микроконтроллера, которые будут работать синфазно. Но коэффициент заполнения для входа нижнего ключа выбирать всегда в 2 раза меньше, чем для верхнего.

В таком режиме подключения ключ сможет оставаться непрерывно открытым сколь угодно долго.

Переключатель нагрузки верхнего плеча с мощным 3a полевым транзистором

    Из-за того, что в открытом состоянии транзистор имеет очень малое сопротивление сток-исток, падение напряжения на нём мало. Именно поэтому имеет значение в какое “плечо” включать нагрузку. Например, для открытия полевого транзистора N-типа на затвор нужно подать положительное напряжение относительно истока – если при этом включить нагрузку в цепь истока, то напряжение на истоке будет равно:

Здесь Rотк. это сопротивление открытого транзистора. Так как данное сопротивление мало (десятки-сотни миллиом), если притянуть затвор к питанию, разница напряжений между затвором и истоком будет недостаточна для полного открытия транзистора даже при большом токе. Данное ограничение можно обойти используя разные источники для питания нагрузки и для управления затвором, но нужно чётко понимать как это работает.

  • Одна из особенностей подключения MOSFET транзистора к цифровым схемам – это необходимость подачи достаточного напряжения затвор-исток. В даташитах на транзистор пороговое напряжение затвор-исток (gate-source), при котором он начинает открываться называется gate threshold voltage (VGS). для полного открытия таким транзисторам надо подать на затвор довольно большое напряжение. Обычно это около 10 вольт, а микроконтроллер чаще всего может выдать максимум 5В. Есть несколько вариантов решения данной проблемы:
    • На биполярных транзисторах соорудить цепочку, подающую питание с высоковольтной цепи на затвор.
    • Применить специальную микросхему-драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117. Надо только не забывать, что есть драйверы как верхнего так и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и коммутирующего транзистора. Для того, чтобы открыть N-канальный транзистор в верхнем плече, ему на затвор нужно подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Этим и отличается драйвер нижнего плеча от драйвера верхнего плеча.

  • Также возможно просто использовать транзистор с малым отпирающим напряжением (т.н. logic level транзисторы). Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
  • Никогда не оставляйте затвор “болтаться” в воздухе – так как транзистор управляется “полем”, на затворе могут наводиться помехи от окружающих электро-магнитных полей, поэтому желательно всегда притягивать его через большое сопротивление либо к питанию, либо к земле, в зависимости от схемы. Сказанное верно, даже если вы используете микроконтроллер для управления транзистором – это поможет избежать неопределённых состояний, когда управляющее устройство, например, перезагружается.

    Наличие емкости на затворе создаёт бросок “зарядного” тока при открытии, поэтому для его ограничения рекомендуется ставить небольшой резистор в цепь затвора. Ограничив ток резистором вы также увеличите время открытия транзистора.

    Для шунтирования импульса тока, образующегося при отключении индуктивной нагрузки, добавляют быстрый защитный диод (TVS-диод), включённый параллельно истоку-стоку. Если имеется однонаправленный супрессор используется обратное включение, хотя допустимо также использовать двунаправленные TVS-диоды. Также, если транзисторы работают в мостовой или полумостовой схеме на высокой частоте (индукционные нагреватели, импульсные источники питания и т.п.), то в цепь стока встречно включается диод Шоттки для блокирования паразитного диода. Паразитный диод имеет большое время запирания, что может привести к сквозным токам и выходу транзисторов из строя.

    Если вы планируете использовать полевой транзистор в качестве быстрого высокочастотного ключа иили для коммутации мощной или индуктивной нагрузки, необходимо использовать т.н. снабберные цепи – часть схемы, замыкающая токи переходных процессов на себя, уменьшая паразитный нагрев транзистора. Снаббер также защищает от самооткрывания транзистора при превышении скорости нарастания напряжения на выводах сток-исток.

    Драйвер верхнего плеча MOSFET транзистора

    В работе [12] предложены возможные схемные решения управления затвором «-канального MOSFET транзистора верхнего плеча, такие как:

    • – драйвер с «плавающим» источником питания;
    • – импульсный трансформатор;
    • – зарядовый насос;
    • – драйвер с бутстрепным питанием (bootstrap).

    При схемотехническом моделировании предпочтение было отдано простому и дешевому решению драйвера с бутстрепным питанием (рис. 9.6), широко используемого в интегральных драйверах ряда фирм, таких как International Rectifier, Agilent Technologies (Hewlett Packard), EUPEC, SEMIKRON. Бутстрепная цепочка VD1 и Cl позволяет создать достаточное большое положительное напряжение затвор – исток для полного отпирания канала мощного МДП или IGBT транзистора.

    Рис. 9.6. Функциональная схема силового ключа с бутстрепным питанием

    Устройство работает следующим образом. Когда транзистор VT1 закрыт, напряжение на нагрузке близко к потенциалу земли, а конденсатор С1 заряжается при этом почти до напряжения ЕП источника питания (за вычетом прямого падения напряжения на VD1). Когда на транзистор VT1 приходит отпирающий сигнал напряжение на конденсаторе С1 обеспечивает дополнительное питание драйвера.

    Читайте также:  Общий провод и заземление в схемах

    Каскад сдвига уровня позволяет преобразовать логический сигнал управления, привязанного к общей шине, в управляющее напряжение затвора относительно истока. При этом напряжение на затворе транзистора VT1 остается все время выше напряжения на его истоке (до установления на истоке напряжения, равного напряжению источника питания) на величину, равную начальному напряжению на конденсаторе С1. Периодическое переключение транзистора VT1 подзаряжает конденсатор С1 прежде чем напряжение на затворе заметно упадет из-за разрядки конденсатора токами утечки обратно смещенного диода VD1.

    Схема для исследования драйвера с бутстрепным питанием показана на рис. 9.7.

    Рис. 9.7. Схема для моделирования драйвера с бутстрепным питанием

    Ключ на MOSFET транзисторе Q1 включен последовательно с нагрузкой R4 и переключает напряжение питания источника V2. Источник VI управляющих сигналов с логическими уровнями формирует импульсы заданной частоты (100 кГц) на вход каскада сдвига уровней, выполненный на транзисторе Q4. На комплементарных транзисторах Q2 и Q3 выполнен усилитель тока, обеспечивающего быструю зарядку емкости затвора MOSFET ключа. Резистор R3 ограничивает выходной ток драйвера. Питание драйвера осуществляется от бутстрепной цепочки Dl, С1.

    При высоком логическом сигнале генератора VI транзистор Q4 открыт, затвор транзистора Q1 находится под потенциалом, близким к потенциалу земли: транзистор Q1 закрыт, конденсатор С1 заряжается при этом почти до напряжения источника питания. С приходом низкого логического сигнала транзистор Q4 запирается, что приводит к нарастанию напряжения на затворе Ш транзистора Q1 до напряжения источника питания минус падение напряжения на диоде D1 и плюс напряжение на бут- стрепном конденсаторе С1, которое обусловлено зарядом емкости в предыдущем цикле и практически равно напряжению питания U3=En– Ufl+Ucl. Повторное переключение транзистора Q1 произойдет раньше, чем напряжение на затворе заметно уменьшится вследствие разрядки конденсатора С1 малыми токами утечки обратно смещенного диода D1 и запертого транзистора Q2.

    Транзистор силового ключа Q1 был выбран из библиотеки INTRNTNL (мощные транзисторы), а маломощные MOSFET транзисторы из библиотеки ZETEX (средней мощности).

    В [58] представлена методика для расчета величины бутстрепной емкости. Результаты выполненного моделирования подтвердили, что для выбранного транзистора irflOlOn в диапазоне частот F от 20 кГц до 100 кГц величина бутстрепной емкости составила 10 нФ. Результаты моделирования приведены на рис. 9.8. Осциллограф контролировал напряжения на нагрузке и на затворе ключа.

    Рис. 9.8. Осциллограммы – (верхняя) напряжение на затворе, (нижняя) – на нагрузке: a) F=10 кГц; б) F=20 кГц; в) F=100 кГц

    В нижней границе частотного диапазона отчетливо виден спад вершины импульса на затворе (верхняя осциллограмма). На частотах 10 кГц и ниже этот спад приводит к неустойчивой работе силового ключа (нижняя осциллограмма) (рис. 9.8, а). На частоте Г=20кГц спад присутствует, но уже не влияет на работу ключа.

    Рис. 9.9. Драйвер верхнего ключа с бутстрепным питанием: а) условно-графическое изображение (УГО); б) схема драйвера; в) схема включения драйвера

    В программе EWB имеется возможность создания многоуровневых схем – Create Subcirquit, когда выделенную часть схемы можно свернуть в подсхему – Subcirquit, и использовать как обычный библиотечный элемент (заказная интегральная схема) в библиотеке Favorites (рис. 9.9). Схема включения драйвера с использованием компонента Driver_H приведена на рис. 9.9, в.

    Применение MOSFET в современных силовых импульсных устройствах

    Texas Instruments UCC27201A

    Несмотря на то, что нитрид-галлиевые транзисторы становятся все более популярным решением для силовых ключей, заслуженные MOSFET до сих пор можно эффективно использовать в современных приложениях.

    С созданием нитрид-галлиевых (GaN) транзисторов многие производители полупроводников начали переоценивать роль обычных MOSFET. Из факта появлением GaN устройств автоматически не следует, что обычные MOSFET устарели, однако перспектива повышения эффективности источников питания и уменьшения их размеров подогревает воображение разработчиков аналоговых устройств. В преддверии так называемой «нитрид-галлиевой революции» полезно разобраться, какие типы устройств имеются на сегодняшний день, и что вы можете с ними сделать.

    До недавнего времени мир мощных транзисторов был грубо разделен на два типа: MOSFET и биполярные транзисторы. MOSFET остаются доминирующим типом транзисторов в силовых коммутационных схемах благодаря высокой скорости переключения и малому сопротивлению сток-исток. Ежегодно продается порядка 40 млрд. MOSFET.

    MOSFET проводят электрический ток в одном направлении (вернее, наиболее эффективно проводят его в одном направлении), а их способность быстро включаться и выключаться при изменении входного напряжения (напряжения на затворе) делает их полезными для формирования импульсов. Наиболее известные из мощных переключательных схем – это импульсные источники питания, однако MOSFET также широко используются в импульсных электроприводах двигателей постоянного тока и звуковых усилителях класса D.

    Биполярные транзисторы и IGBT

    В отличие от мощных MOSFET, которые включаются и выключаются исключительно быстро и, в идеале, линейны, биполярные транзисторы порождают «мягкие фронты», больше напоминающие синусоидальные сигналы, чем импульсы. Они реагируют на изменения тока на своих входах, и могут использоваться для относительно медленных индуктивных нагрузок: электродвигателей, источников питания потребительских устройств и звуковых динамиков. Ежегодно используется от 7 до 8 млрд. мощных биполярных транзисторов.

    Для того чтобы биполярные транзисторы вели себя подобно усилителям, необходимо дополнительно смягчать их переключательные свойства. Надо организовать им входное смещение таким образом, чтобы они всегда находились в линейной области и никогда не были полностью открыты или закрыты. Биполярные транзисторы вполне подходят для управления индуктивными нагрузками, однако, не имея такого низкого сопротивления, как MOSFET, они могут очень сильно нагреваться.

    Третий тип, биполярный транзистор с изолированным затвором (insulated-gate bipolar transistor, IGBT), фактически представляет собой биполярный транзистор с встроенным драйвером затвора. Он переключается несколько быстрее, чем биполярные устройства, но не так быстро, как MOSFET. Особое преимущество IGBT – это их способность выдерживать большие напряжения (свыше 600 В) и токи, что делает их фаворитами для управления промышленными электроприводами в системах автоматизации производства (где они управляют конвейерными лентами и манипуляторами роботов), а также в автомобилях (для управления электроприводами люков и зеркал бокового обзора). Ежегодно продается от 1.5 до 2.5 млрд. IGBT.

    Поведение транзисторов

    Несмотря на доступность широчайшего выбора диапазонов рабочих напряжений и токов мощных транзисторов, выпускаемых в разнообразных корпусах и обеспеченных технической поддержкой производителей, каждому из трех видов транзисторов – биполярным, MOSFET и IGBT – присуще свое поведение, определяющее области их применения. Благодаря дешевизне в больших партиях (например, стоят от 12 до 15 центов за штуку), 100-вольтовые биполярные транзисторы широко используются для получения напряжений ±40 В в усилителях мощности звукового диапазона. (В биполярные транзисторы для аудиоприложений некоторые производители встраивают цепи автоматического смещения).

    Между тем, 600-вольтовые IGBT можно найти дома в электроприводах бытовой техники, подключенной к сети переменного тока 220 В, например, в стиральных машинах или сушилках. Основная область применения мощных MOSFET – безусловно, импульсные источники питания. В них транзисторы на напряжения 25, 30 или 40 В, называемые «низковольтные MOSFET», используются для получения питающих напряжений 5 или 12 В, необходимых компьютерам и телекоммуникационной аппаратуре.

    Хотя и не всегда, инженеры склонны выбирать транзисторы с запасом по току и напряжению. Вы можете заметить, что в стиральной машине, которая подключается к сети 220 В, используются IGBT, рассчитанные на 600 или 650 В, а в силовых цепях плат серверных модулей, питающиеся от 5.0 В или 3.3 В, установлены MOSFET, допустимые напряжения которых начинаются с 30 В. И, наконец, на стереодинамики работают 100- и 200-вольтовые биполярные транзисторы.

    Такой запас позволяет быть уверенным, что наши системы не останутся без источников питания. Кроме того, он защищает от резких выбросов напряжения и скачков тока. (Автомобильное оборудование особенно подвержено выбросам, и для того, чтобы справиться с бросками в 150 В, выбираются компоненты, рассчитанные на 400 В).

    Убедить инженеров отказаться от чрезмерного запаса по предельным параметрам, в конечном счете, могут постоянное сглаживание, фильтрация и стабилизация на протяжении всей цепи прохождения питания. Такой подход затронул бы архитектуру вычислительных серверов, где такие производители, как, например, IBM и NTT DOCOMO выступают за распределительные сети 385 В постоянного тока для мегаваттных дата-центров и 48 В как промежуточное напряжение для стоек и шкафов. Это позволило бы разработчикам сузить границы предельных параметров мощных компонентов и, например, использовать меньшие по размерам и более дешевые 60-вольтовые компоненты в тех слотах, где раньше служили компоненты с допустимым напряжением 100 В. При этом инженеры должны обращать внимание на области безопасной работы (safe operating areas – SOA) тех транзисторов, которые они надеются использовать.

    Области безопасной работы

    Область безопасной работы определяется как множество значений тока и напряжения, в пределах которых можно ожидать, что устройство будет работать без повреждений.

    Как правило, область безопасной работы представляется в виде графика в спецификации производителя. Ток в амперах отображается по оси Y. Максимальное напряжение сток-исток для MOSFET (или напряжение коллектор-эмиттер для биполярного транзистора) откладывается по оси X. Кривая обычно напоминает горнолыжный склон, где допустимый ток резко падает с увеличением напряжения.

    Поскольку обычно MOSFET используются в импульсных схемах, некоторые производители транзисторов определяют область безопасной работы в зависимости от длительности импульсов (в миллисекундах). Если транзистор постоянно включен (проводит постоянный ток), то максимальный допустимый ток спадает быстрее, чем если ток пульсирует с интервалом 1 мс или 10 мс. Как видно из Рисунка 1, область безопасной работы будет наибольшей, когда транзистор переключается с периодом 100 мкс (что эквивалентно частоте 10 кГц). Таким образом, область безопасной работы любого транзистора зависит от коэффициента заполнения импульсов, то есть, от соотношения между временами включения и выключения.

    Рисунок 1.Область безопасной работы для напряжения и тока зависит
    от коэффициента заполнения управляющих импульсов.

    Драйверы верхнего и нижнего плеча

    При выборе транзисторов может оказаться желательным обратить внимание на способ включения MOSFET в схеме источнике питания. В частности, определить, подключена ли индуктивная или резистивная нагрузка между стоком MOSFET и положительной шиной питания (конфигурация, называемая «ключ нижнего плеча»), или же нагрузка подключена между истоком и землей («ключ верхнего плеча»).

    Читайте также:  Как укоротить диполь

    Режимы работы транзисторов в верхнем и нижнем плече не всегда одинаковы. Когда драйвер верхнего плеча нагружен больше, чем драйвер нижнего плеча, вы озабочены тем, чтобы он не замкнулся на положительный источник питания. Аналогично, вы не захотите, чтобы драйвер нижнего плеча был закорочен на землю. Таким образом, требования, предъявляемые к драйверам верхнего и нижнего плеча, различны.

    В драйвере нижнего плеча вывод истока n-канального транзистора соединен с землей, а сток соединен с индуктивной нагрузкой, другой вывод которой подключен к положительному источнику питания. Любой положительный заряд затвора включает транзистор, открывая путь протекания тока через нагрузку. В схеме нижнего плеча пороговое напряжение на затворе равно уровню логической единицы для управляющей ключом 3-вольтовой КМОП или 5-вольтовой логики.

    В конфигурации верхнего плеча сток MOSFET подключается к положительной шине питания, а исток подключается к нагрузке, противоположный вывод которой соединен с землей. При этом только для того, чтобы просто включить n-канальный транзистор, на его затворе должно быть напряжение, равное напряжению на нагрузке (почти равное напряжению питания), плюс пороговое напряжение затвора (3 В).

    Каналы p- и n-типа

    Простой ключ верхнего плеча можно сделать на p-канальных MOSFET. Использование отрицательного напряжения для открывания p -канального MOSFET меняет схему управления. А именно, чтобы дать транзистору «проводить ток», надо опустить управляющее напряжение ниже порога, а чтобы его выключить, надо подать на затвор напряжение шины питания.

    Но p-канальные транзисторы сложны в изготовлении, и, соответственно, дороже обычных n-канальных приборов, а для их открывания может потребоваться отрицательное напряжение на затворе (или, по крайней мере, подключение затвора к земле). Это подходит для батарейного питания переносной аппаратуры, но неудобно для импульсных источников питания.

    Одним из решений из решений может быть объединение n- и p-канального транзисторов в двухтактной конфигурации, где они проводят ток поочередно. Здесь стоки p-канального MOSFET верхнего плеча и n-канального MOSFET нижнего плеча соединены вместе, а их затворы управляются синхронно, в результате чего получается один сильноточный ключ. Разработчик должен контролировать процесс переключения, не допуская сквозных токов, которые могут возникать, если оба MOSFET включаются одновременно.

    В качестве альтернативы не полностью согласованным p- и n-канальным MOSFET можно использовать микросхему драйвера затворов, которая управляет MOSFET верхнего и нижнего плеча в двухтактной схеме. (Оба устройства n-канальные). Оба транзистора могут включаться и выключаться одной микросхемой (Рисунок 2).

    Рисунок 2.Разработчики могут выбрать микросхему драйвера затворов,
    управляющую MOSFET верхнего и нижнего плеча в двухтактной
    схеме. (Оба устройства n-канальные).

    И последнее замечание. Низкое сопротивление сток-исток открытого транзистора (RDS(on)) под нагрузкой не говорит о хороших переключательных характеристиках MOSFET, хотя обычно производители на первом месте указывают в спецификации именно низкое значение RDS(on). От величины сопротивления RDS(on) зависит эффективность полевого транзистора – чем оно меньше, тем меньше выделяется тепла. Однако при снижении сопротивления транзистора падает скорость его переключения. Это связано с тем, что для снижения RDS(on) приходится увеличивать размеры затвора, что увеличивает его емкость и затрудняет управление транзистором.

    Материалы по теме

    Перевод: Дмитрий Иоффе по заказу РадиоЛоцман

    Переключатель нагрузки верхнего плеча с мощным 3a полевым транзистором

    Производители полупроводниковых приборов разрабатывают новые, более совершенные изделия, что дает возможность радиолюбителям, в свою очередь, создавать простые компактные устройства с улучшенными параметрами, недостижимыми всего лишь несколько лет назад. Один из примеров тому пред-ставлен в публикуемой ниже статье, в которой описан мощный электронный включатель—выключатель, способный во многих случаях потеснить своего электромагнитного конкурента.

    На рис. 1 представлена схема одного из вариантов мощного электронного реле, предназначенного для коммутации тока нагрузки до 20 А при напряжении 5. 20 В. Устройство собрано на базе мощного п-канального транзистора МДП АРМ2556NU), имеющего сопротивление канала не более 5,7 мОм при напряжении затвор—исток 10 В или не более 10 мОм при 4,5 В. Столь малое сопротивление открытого канала позволяет с помощью этого прибора коммутировать большой ток, причем установка транзистора на теплоотвод при невысокой частоте переключения (единицы — десятки килогерц) обычно не требуется. Устройство может быть использовано, например, как электронный включатель—выключатель выходного напряжения в мощном блоке питания, мощных источников света в аккумуляторных фонарях, низковольтных электродвигателей, тяговых электромагнитов и для множества других применений.
    Использование в качестве основного коммутирующего элемента мощного транзистора МДП в сравнении с электромагнитным реле позволяет получить меньшее сопротивление “замкнутых контактов”, отсутствие их выгорания и искровых помех, более высокое быстродействие (при электронном управлении). Кроме того, такой электронный переключатель будет иметь меньшие габариты и массу, чем электромагнитные реле на ток 10. 20 А, а также значительно меньший ток, потребляемый цепями управления.
    Управлять электронным переключателем можно двумя малогабаритными кнопками без фиксации, например, герконовыми, мембранными или резиновыми с токопроводящим покрытием.

    На рис. 2 для сравнения габаритов показаны электромагнитное реле С71-2А-Р фирмы Omron, контакты которого рассчитаны на коммутацию тока 20 А, и макет электронного реле на
    транзисторе МДП. Электронный узел даже при относительно просторном монтаже занимает вчетверо меньший объем (кнопки и светодиод смонтированы вне платы) и значительно легче.
    При подаче напряжения на вход устройства, полевой транзистор VT2 остается закрытым, подключенная к выходу нагрузка — обесточенной, светодиод НL1 — выключенным. Чтобы подать напряжение на нагрузку, необходимо на короткое время нажать на кнопку SB1. Это приведет к открыванию транзистора VТ1 и вслед за ним транзистора VT2.
    О поступившем к нагрузке напряжении проинформирует включившийся светодиод HL1. Конденсаторы СЗ и С4, а также С1, С2, С5, С6 устраняют воз-можное влияние на состояние транзисторов различных помех. Диоды VD2— VD5 предназначены для принудительного выключения устройства при снижении входного напряжения примерно до 3 В, что предохраняет полевой транзистор VT2 от перегревания.
    Дело в том, что столь глубокое уменьшение напряжения затвор—исток транзистора /Т2 резко увеличивает сопротивление канала и, как следствие, выделяемую в нем тепловую мощность, особенно при большом нагрузочном токе. Для того чтобы предохранить полевой транзистор от перегревания, предусмотрена цепь R5VD2—VD5, закрывающая оба транзистора.
    Варистор RU1 и стабилитрон VD1 защищают сравнительно низковольтный полевой транзистор от всплесков напряжения, например, от ЭДС самоиндукции электродвигателя, подключенного к входу или выходу устройства, или, например, от случайного повреждения статическим электричеством при прикосновении к затвору транзистора /Т2 отверткой (или другими металличе¬скими предметами).
    Для выключения устройства достаточно кратковременного замыкания контактов кнопки SB2. Управлять состоянием транзистора VT2 можно не только мало-мощными миниатюрными кнопками, но и, например, двумя оптронами или маломощными герконовыми реле. Следует отметить, что в выключенном состоянии переключатель практически не потребляет энергии.
    Экспериментальный образец устройства был смонтирован на монтажной плате размерами 46×27 мм из стеклотекстолита навесным монтажом. Сильноточные цепи выполнены короткими отрезками монтажного провода сечением не менее 1,2 мм .
    Транзистор АРМ2556NU в миниатюрном корпусе Т0252 допускает максимальное напряжение сток—исток 25 В. При токе стока 40 А и напряжении затвор—исток 10 В или 20 А при напряжении затвор—исток 4,5 В типовое зна¬чение сопротивления открытого канала не превышает 4,5 и 7,5 мОм соответственно. Максимально допустимый постоянный ток стока транзистора при температуре корпуса 25 °С — 60 А.
    Транзистор следует припаять к теплоотводу с полезной площадью поверхности не менее 7 см/2 на случай работы при пониженном напряжении питания с большим током нагрузки. При монтаже транзистора необходимо принимать меры по его защите от пробоя статическим электричеством.
    Транзисторы АРМ2556NU, предназначенные для работы в понижающих импульсных стабилизаторах напряжения, сейчас широко используют в со-временных высокопроизводительных видеокартах и компьютерных системных платах. Заменить этот транзистор можно двумя соединенными параллельно миниатюрными, но имеющими вдвое большее сопротивление открытого канала транзисторами АРМ25101NU (8,5 МОм при U3-и = 10 В) или другими аналогичными, управляемыми низким напряжением затвор—исток. При ис-пользовании транзисторов с большим чем у АРМ25561NU, сопротивлением ка-нала для сохранения малого сопротивления переключательного элемента можно включить несколько однотипных полевых транзисторов, соединенных параллельно.
    Транзистор 2SA733B заменим любым из серий 2SА733. 2SА992, SS9015, КТ3107, КТ6112. Вместо BZV55С15 подойдет стабилитрон 1N744А, TZМС-15, 2С215Ж, КС215ЖА, а вместо 1N148 — диод 1 N914 (или любые из серий КД522, КД521). Светодиод — любой общего применения, желательно с повышенной светоотдачей, например, из серий КИПД40, КИПД66. Для каждого конкретного напряжения на нагрузке следует подбирать резистор с тем, чтобы не превысить номинальный ток светодиода.
    Оксидные конденсаторы — К50-68, К53-19 или импортные. Остальные — К10-17, К10-50. Варистор FNR-05K220 можно заменить любым маломощным на 18. 22 В, например FNR-05K180.
    Безошибочно собранное из исправных деталей устройство не требует на-лаживания.
    В зависимости от конкретных особенностей применения предлагаемый для повторения коммутатор можно упростить или усовершенствовать. Например, если исключены всплески напряжения со стороны источника питания или подключенной нагрузки, можно обойтись без варистора RU1. Также можно отказаться от защитного стабилитрона VD1, если напряжение источника питания не превысит 15 В и исключены всякие прикосновения к выводу затвора транзистора VT2.
    Если в цепь нагрузки ввести последовательно обмотку самодельного герконового реле, разомкнутые контакты которого подключены параллельно контактам кнопки SB2, то питание нагрузки будет автоматически отключаться при увеличении потребляемого ею тока выше заданного. Для изготовления такого реле на баллон геркона КЭМЗ надо намотать несколько витков толстого (диаметром 0,7. 1,2 мм) обмоточного провода. Так, например, с катушкой из семи витков провода ПЭВ-2 0,68 реле сработает при токе около 5 А. Требуемое число витков для желаемого тока срабатывания защиты для конкретного экземпляра геркона определяют экспериментально.

    Автор: А. БУТОВ, с. Курба Ярославской обл.

    Рейтинг
    ( Пока оценок нет )
    Загрузка ...
    Adblock
    detector