Простой измеритель температуры

Простой цифровой термометр своими руками с датчиком на LM35

Для изготовления этого простого цифрового термометра необходим температурный датчик LM35, цифровой вольтметр (любой недорогой китайский цифровой мультиметр), два маломощных диода, один резистор и несколько батареек (либо элемент типа «Крона»). Из этих компонентов можно быстро собрать простой цифровой многофункциональный термометр с диапазоном температур от -40 до +150 градусов Цельсия. Для измерения только положительных температур диоды и резистор не нужны.

Точность измерения температуры 0,1 градуса Цельсия, т.е. термодатчик для многих применений можно назвать прецизионным. Для этого универсального цифрового термометра использованы полупроводниковые датчики температуры LM35DZ/NOPB для температуры от 0 до +100°C и LM35CZ/NOPB для температуры от -40 до +110°С в корпусах TO-92. В datasheets некоторых производителей LM35 указана верхняя измеряемая температура +150 градусов Цельсия.

Такой электронный измеритель температуры можно быстро сделать своими руками. Достаточно подключить Крону (или три пальчиковые батарейки, соединенные последовательно) к датчику, а датчик к вольтметру, как показано на рисунке – и термометр готов. Датчик потребляет от источника питания ток не более 10 мкА, поэтому батарейку можно не отключать длительное время.

Диапазон использования такого цифрового датчика очень широк:
– термометр комнатный
– термометр уличный
– термометр для воды и других жидкостей
– термометр для инкубатора
– термометр для бани и сауны
– термометр для аквариума
-термометр для холодильника
– термометр для автомобиля
– цифровой многоканальный термометр и т.д.

Схема цифрового термометра для измерения температуры от минус 40 до плюс 110 градусов Цельсия с однополярным источником питания. Диоды маломощные кремниевые – КД509, КД521 и т.д. Диапазон измерения тестера надо устанавливать на 2 вольта (2000 мВ), последняя цифра будет показывать десятые доли градуса, ее следует отделить точкой.

Для воды и других жидкостей датчик термометра следует сделать герметичным, для этого его можно залить силиконовым герметиком, либо поместить в медную трубку с внутренним диаметром 6 мм со сплющенным и запаянным концом. Запаянный конец трубки надо заполнить термопастой. Затем припаять к датчику провода, изолировать контакты и вставить датчик в трубку – протолкнуть до упора, чтобы он находился в теплопроводящей пасте. Таким образом получаем щуп-термометр. Если инерционность термометра не является критичной, датчик можно вставить в пластиковую трубку и загерметизировать ее концы.

Термометр легко сделать многоканальным. Для этого можно использовать как механические, так и электронные аналоговые переключатели. Ниже, для примера приведена схема двухканального термометра для плюсовых температур с использованием «перекидного» тумблера.

Этот прибор показывает уличную температуру, датчик висит за закрытой форточкой. Время на сборку заняло 30-40 минут.

Так выглядит прибор сзади. Собран градусник по схеме с одним источником питания, двумя диодами и резистором. Поскольку отрицательное смещение на диодах составляет порядка 2-х вольт, а минимальное напряжение питания датчика 4 вольта, в качестве БП использованы спаянные последовательно 5 батареек ААА. Датчики припаяны к неэкранированным проводам длиной 2,5 метра.

На этом фото показаны два термометра. Датчик первого размещен в холодильной камере, а второго – в морозильной камере этого же холодильника. Точка на индикаторе мультиметра нарисована черным маркером.

Измерил температуру своего тела – полный порядок. Подключил точно такой же другой прибор (без точки на индикаторе) к этому же датчику и огорчился, прибор «врет» в большую сторону на 0,2 градуса. В кипящей воде не пробовал: не готовы герметичные щупы. Перед замерами батарейки в обоих приборах заменил на одинаковые новые.

На основе этого термодатчика можно сделать простой регулятор температуры, добавив компаратор с регулируемым или фиксированным порогом срабатывания и силовой ключ (оптосимистор, реле …), который будет включать нагреватель. Для построения термостата (инкубатора, например) такая схема не пойдет, LM35 необходимо подключать к устройству с функцией ПИД-регулятора, например, ТРМ210.

Простой измеритель температуры

Автор: Сэр Мурр
Опубликовано 01.01.1970

Измерение температуры – один из самых насущных видов измерений и в быту, и в работе. Электронный термометр – штука полезная, особенно если он цифровой. Характеристики термометра в первую очередь определяются первичным датчиком температуры, или термопреобразователем. Для краткости будем называть его просто – датчик. Наиболее популярные виды датчиков приведены в таблице.

Существуют и более экзотические датчики температуры – манометрические, кварцевые нетермокомпенсированные резонаторы, пирометрические датчики, и ещё другие, о которых неизвестно даже Премудрому Коту.
Чаще всего применяются термопары – из-за их дешевизны . Это хорошо для промышленности, когда известна характеристика термопары. Чаще всего используются типа ХА (К) с предельной рабочей температурой +1300 о С, и ХК (L) c предельной температурой +850 о C. Прочие виды термопар – более дефицитны. Можно и самому сделать простейшую термопару, например, для паяльной станции – взять один провод от держателя нити накала осветительной лампочки, а другой провод – железный или медный, скрутить их концы плоскогубцами – и вуаля- термопара готова! Но надёжность такого решения весьма сомнительна, лучше всё-таки сварить концы термопары в газовой горелке. Придётся также самому снимать температурную характеристику этой термопары.
У нас на сайте публиковались практические реализации термометров на полупроводниковом датчике и на термопаре. Там же рассматривались способы калибровки термометров на этих датчиках.
Сейчас мы рассмотрим конструкцию термометра типа RTD. Как уже упоминалось, датчики такого типа обладают наиболее высокой линейностью (или, более точно – монотонностью) и повторяемостью характеристик.

Кстати, стоит заметить, что все справочники перепечатывают одну и ту же информацию о необыкновенно высокой линейности таких датчиков. Но достаточно построить график характеристики, как будет видна её нелинейность. Коэффициент пропорциональности между изменением температуры и приращением сигнала называется коэффициентом Зеебека (или Сибека – кому как нравится). Этот коэффициент наиболее равномерен у датчиков типа RTD. А вот у термопар коэффициент Зеебека может даже менять знак, особенно при широком диапазоне измерения. И чем чувствительнее термопара, тем меньше линейность коэффициента.

Простейший датчик RTD можно сделать, намотав соответствующее количество медной проволоки на оправку. Недостаток такого датчика – предельная рабочая температура, ограниченная +200 о С. Гораздо более высокой температурной стойкостью обладают платиновые термометры сопротивления – до +850. +1100 о С . Все образцовые термометры и эталоны делаются на их основе. Конечно, сделать тончайшую платиновую проволоку непросто, поэтому стоимость таких датчиков высока. Но сейчас производители насобачились делать платиновые сопротивления по той же технологии, что и микросхемы – напылением, и стоимость снизилась настолько, что их может купить любой человек.

На фотографии можно видеть три вида исполнения датчиков. Слева направо – в керамическом корпусе для измерения высоких температур; бескорпусный датчик, изготовленный по интегральной технологии; датчик для измерения температуры агрессивных сред (корпус сделан из кварцевого стекла); и готовый термометр. Градуировка такого термометра очень проста. Вместо датчика включается образцовый магазин сопротивлений, и выставляется сопротивление, соответствующее измеряемой температуре.
Cледует знать, что существует два вида зависимости сопротивления от температуры: группа с W100=1.3850 (стандартDIN, используется платина чистоты 99,99%) и W100=1,3910 (американский стандарт, в платину добавлены другие элементы платиновой группы). При покупке датчика неплохо бы знать эту зависимость, чтобы правильно калибровать термометр. Номинальное сопротивление изготовляемых платиновых датчиков Rном= 20; 50; 100; 1000 Ом при нуле градусов Цельсия. Сопротивление датчика в зависимости от температуры выражается простой формулой
Rt= Rном * К
В таблице приведены значения нормированного сопротивления К при разной температуре для обоих видов зависимости W100

Читайте также:  Датчик положения коленчатого вала

Для любительских целей точности этой таблицы вполне достаточно. Точность калибровки будет зависеть только от точности образцового магазина сопротивлений (при калибровке по магазину сопротивлений) или от точности омметра (при отсутствии образцовых сопротивлений).
Сама принципиальная схема достаточна проста. Представлены два варианта исполнения – с датчиком на Rном=100 Ом на два предела измерения +/- 199,9 о C и -200. +800 о C(первичный датчик не рассчитан на более высокую температуру).

Здесь:
S1.1 включение питания измерительной схемы
S1.2 включение питания вольтметра
S2.1 переключение диапазона измерения +- 199,9 градуса Цельсия или +800 – 200 градусов Цельсия.
S2.2 переключение запятой на вольтметре.
R2 подстройка шкалы +800 градусов Цельсия.
R5 подстройка нуля шкалы.

Второй вариант использует датчик на Rном=1000 Ом. Этот вариант – однопредельный +/- 199,9 о C , но зато очень экономичный.

Здесь:
S1.1 вкл. питания измерительной схемы
S1.2 вкл. питания вольтметра
R2 подстройка шкалы +199,9 градусов Цельсия.
R5 подстройка нуля шкалы.

Образцовое стабильное напряжение 2,5 вольта подаётся на неинвертирующие входы ОУ, что превращает ОУ в источники тока. По закону Ома падение напряжения на сопротивлении пропорционально току. Но ток у нас постоянный, и падение напряжения будет зависеть от сопротивления. Источник тока на DA2.1 нагружен на постоянное сопротивление, и поэтому напряжение на выходе ОУ будет постоянным. Источник тока на DA2.2 нагружен на датчик, и напряжение на выходе ОУ будет меняться с температурой. Вольтметр по шкале измерения 0,2 вольта измеряет разность напряжений, прямо пропорциональную температуре. Такое схемное решение позволяет сохранять точность измерения в диапазоне напряжения от 3 до 10 вольт. Следует обратить особое внимание на источник образцового напряжения, поскольку он определяет точность всего термометра. С обычными стабилитронами и даже прецизионными типа TL431 ничего толкового не получится. Надо использовать специальные микросхемы- источники опорного напряжения, например AD680, REF192. Они дороже, но лучше по всем характеристикам, и гораздо экономичнее по току потребления. Однопредельный термометр потребляет 1,5 мА по измерительной цепи, и менее 1 мА по цепи индикации.

Ещё одна особенность схемного решения – раздельные цепи питания измерительной цепи и вольтметра. Вольтметр – готовый модуль с Ж/К индикатором, но ничто не мешает использовать любой другой вольтметр. Главное – цепи питания должны быть раздельные, без гальванической связи. Однопредельный термометр, показанный на фото, питается от двух батареек “Крона”.

Резисторы должны быть с 1% допуском от номинала. Если их нет, то подберите по цифровому омметру как можно ближе к номиналу. Подстроечные резисторы – многооборотные типа СП5-22.

Настройка однопредельного термометра с датчиком номинальным сопротивлением 1000 Ом.
Вместо датчика подключите образцовый магазин сопротивлений, желательно класса 0,05. Установите сопротивление 1000,00 Ом – это соответствует температуре 0оC. Регулировкой резистора R5 установите на цифровом индикаторе 0.0. Установите на магазине сопротивление 1754,70 или 1766,60 Ом (в зависимости от характеристики датчика W100); на цифровом индикаторе резистором R2 установите показания +199,9 о C .

Настройка двухпредельного термометра с датчиком номинальным сопротивлением 100 Ом немного сложнее. Сначала калибруем по нулевым показаниям индикатора (100,00 Ом на магазине сопротивлений), затем калибруем первый предел измерения +/-199,9 подстройкой опорного напряжения вольтметра (для этого см. принципиальную схему используемого вольтметра), на магазине сопротивлений 176,66 или 175,47Ом; и, наконец, верхний предел измерения температуры – точку +800 о C – на магазине сопротивлений 375,51 или 379,72 Ом.
Теперь можно установить на магазине любое табличное сопротивление и на индикаторе прочесть соответствующее значение температуры, или повторить калибровку по другим точкам, например на точках 20 и 80 % полной шкалы. Так мы немного разбросаем погрешность измерения из-за нелинейности датчика по всему диапазону.

Тут с криком “Я, я знаю как это объяснить!” к клавиатуре пролез кот Сэра Мурра и накатал следующий текст.
Построим график зависимости и соединим конец и начало графика прямой линией. Мы увидим, что примерно посредине наш график имеет максимальное отклонение от прямой линии, и здесь у нас максимальная погрешность измерения со знаком + (рис. а). Теперь переместим прямую параллельно, так, чтобы она касалась нашей экспериментальной кривой в одной точке. Отклонение от прямой сменило знак на минус, и наибольшее отклонение наблюдается на краях диапазона (рис. б). А теперь поместим прямую посредине двух предыдущих положений (рис. в). И – чудо! Отклонение от прямой получилось и со знаком плюс, и со знаком минус, но абсолютная величина отклонения стала почти в два раза меньше!
Вот таким способом можно уменьшить погрешность калибровки при линейной аппроксимации.

Поскольку на этом энтузиазм кота Сэра Мурра закончился, сопроводительные рисунки хозяину пришлось сделать самому, а также написать заключительную фразу:

После тарировки не забудьте подключить датчик вместо проверочного сопротивления!

Как сделать термометр своими руками?

Термометр – предмет, который присутствует практически в каждом доме. Он всегда нужен и полезен, ведь глядя на его шкалу, можно узнать, какова настоящая температура воздуха за окном. Основной процент людей покупает эту деталь в специализированных магазинах, но на самом деле хороший термометр вполне возможно соорудить своими руками. В этой статье мы узнаем, как это можно сделать правильно.

Принцип работы

Прежде чем спешить самостоятельно изготавливать хороший термометр, важно разобраться в принципе его работы. Также важно знать схему будущего изделия и разобраться во всех схемах, которые будут присутствовать в нем. В наше время многие люди выбирают электронные устройства, различающиеся и по форме, и по размерам. Рассмотрим принцип действия современных термометров на примере этих устройств.

Параметры производительности материала напрямую зависят от температуры окружающей среды. Отталкиваясь от этого, проектируется сама электронная схема будущего термометра. Обычно в его устройстве имеет место термопара. Это такой электронный прибор, который состоит из 2 металлов, которые были сварены друг с другом. На их поверхности присутствует специальная контактная площадка, подключенная к измерительной схеме. В условиях нагрева или охлаждения контактов образуется термоэлектродвижущая сила. Ее появление и изменения держатся под контролем и регистрируются платой электроники устройства.

В новых усовершенствованных устройствах вместо обычного термочувствительного составного элемента применяется диод кремниевого типа.

Полупроводниковый радиоэлемент отличает зависимость вольтамперной характеристики от воздействия температурных значений. Проще говоря, при условии прямого запуска значение падения напряжения на переходе меняется исходя из уровня нагрева полупроводниковой детали.

Все данные, что были обработаны подобным термометром, в итоге выводятся на дисплей. Таким образом пользователь может узнавать всю нужную ему информацию о температуре. Современные цифровые модели градусников дают возможность фиксировать температурные изменения в диапазоне от -50 до 100 градусов Цельсия.

Необходимые инструменты и материалы

Если вы решили самостоятельно изготовить термометр, то вам стоит подготовить все необходимые для того материалы и инструменты. Изготавливать термометры можно разными способами и из разных материалов – как из дешевых и доступных, так и дорогих. Рассмотрим, что может понадобиться для создания такого полезного предмета:

  • линейка;
  • маркер с тонким стержнем;
  • обычный покупной термометр (будет нужен для калибровки самодельного изделия);
  • пластиковая бутылка (если термометр делается из нее);
  • тонкая стеклянная или пластиковая трубка;
  • скотч;
  • специальная плата (если планируется изготовление более сложного электронного термометра);
  • светлый картон или полукартон (из него тоже можно изготовить термометр);
  • толстые белые или красные нитки;
  • игла с крупным ушком;
  • карандаш.

Конкретный список необходимых составляющих будет напрямую зависеть от того, какой именно термометр вы хотите изготовить.

Все необходимые составляющие желательно заготовить заранее перед началом всех работ, чтобы в нужный момент не пришлось искать необходимое приспособление (особенно если оно маленькое) по всему дому, теряя время.

Особенности изготовления

Сделать термометр своими руками можно разными способами. Возможно сделать самое простое устройство, для которого не требуются специальные запчасти и детали, а есть такие самодельные варианты, сделать которые будет довольно трудно. Рассмотрим, как надо правильно сооружать термометры своими руками на примере нескольких популярных моделей.

Читайте также:  Двухканальное зарядно-разрядное устройство

Из вольтметра

Термометр подобного вида можно изготовить самостоятельно. Но сперва необходимо соорудить приставку к мультиметру для измерения температурных значений, используя 2 основные детали:

Попутно вольтметр надо переделать в термометр. LM 35 представляет собой интегральный датчик температуры, рассчитанный на широкий диапазон температурных значений.

Его отличает высокая точность и калиброванный выход по напряжению. Указанный датчик призван измерять температуру от -55 до +110 градусов Цельсия (при этом имеет место коэффициент 10 мВ/С). Здесь потребляемый ток составляет меньше 60 мкА. Подобная деталь также используется в автомобильных бортовых компьютерах «Мультитроникс». Здесь они также применяются с целью измерения температурных показателей.

Следует тщательно распаять схему на макете и там же хорошо зафиксировать источник питания (для этого вполне подойдет батарейка не менее 3 вольт). Далее можно произвести подключение к тестеру. Надо при помощи подстроечника настроить температуру, опираясь на показания другого термометра и на этом устройство будет готово!

Из пластиковой бутылки

Если хочется изготовить своими руками более простой вариант термометра, то можно обойтись и использованием пластиковой бутылки. Разберем пошагово, как в домашних условиях соорудить такую любопытную вещицу.

  • В пластиковую бутылку надо влить воду и медицинский спирт. Соотношение компонентов должно быть 1: 1.
  • В полученный состав понадобится капнуть пару капелек пищевого красителя. Удобнее всего вносить этот компонент, используя пипетку.
  • Красящий компонент будет нужен для того, чтобы можно было следить за температурными изменениями.
  • Далее в бутыль надо вставить пластиковую трубочку (подойдет и стеклянная). Ее необходимо вставлять с максимальной осторожностью, чтобы не вылилась вода.
  • Теперь понадобится аккуратно приподнять верхнюю половинку трубки над горлышком, чтоб она выдавалась примерно на 10 см. Другой конец трубочки должен соприкасаться с дном резервуара.
  • Правильно поставьте трубочку и зафиксируйте ее, используя специальную формовочную глину (подойдет пластилин).
  • Позаботьтесь о плотной закупорке, чтобы из емкости жидкость не вытекла ни при каких обстоятельствах.
  • Сбоку к трубке прикрепите полосочку, заготовленную из белой толстой бумаги. Ее понадобится зафиксировать с тыльной стороны, используя скотч.
  • Бумага пригодится для того, чтобы можно было держать под контролем уровень жидкой смеси в бутылке. В дальнейшем на указанную деталь можно будет наносить метки.
  • Раствор для измерения понадобится долить в трубку, также используя пипетку.
  • Добейтесь того, чтобы жидкий состав в трубке поднимался на примерную высоту в 5 см над горлом бутылки.
  • Теперь в трубочку понадобится внести каплю растительного масла.

Собрав такой термометр, его работу надо проверить. По очереди опускайте бутылку с трубочкой в резервуары с горячей и холодной водой.

Когда прибор окажется в холодной жидкости, уровень раствора в трубке должен спуститься вниз, а когда он окажется в горячей воде, уровень повысится.

С выносным датчиком

Это сложный вариант самодельного термометра. Устройства, работающие на специальной термопаре и микроконтроллере, в изготовлении могут оказаться не самыми понятными, поэтому приступать к их самостоятельному изготовлению лучше людям, которые будут точно знать, что делают и с чем работают.

Для сооружения такого прибора будут нужны:

  • термический датчик (подойдет Dallas SD1820);
  • 2 диода Шоттки;
  • стабилитроны на 3,9 V, 6,2 V и 5,6V;
  • 1 диод 1N4148;
  • 1 конденсатор 10мкФ на 16V;
  • 1 резистор 1,5 кОм 0,25 Вт;
  • корпус для разъема;
  • 9-контактный разъем СОМ-порта типа «мама».

При определенном опыте и умениях можно смонтировать все элементы прямо на разъеме – это очень удобно.

В результате получится интересная модель термометра, которая будет работать в диапазоне температур от -55 до +125 градусов Цельсия. Погрешности здесь будут небольшими.

Готовому устройству потребуется правильная калибровка сенсоров. После этого нужно лишь подключить датчик к порту компьютера. Далее понадобится соответствующая программа измерения температуры. Для этого подойдет Temp. Keeper.

Из картона

Как ни странно, термометр можно изготовить из самых простых и доступных материалов, например, из картона. Подобный способ изготовления устройства максимально прост и доступен каждому. Разумеется, такие «устройства» чаще всего делаются для детей или детьми. Рассмотрим пошагово, как можно изготовить такой игрушечный или шуточный термометр своими руками.

  • На листе плотного картона понадобится нарисовать форму, повторяющую настоящий медицинский градусник (его можно использовать, чтобы срисовать контуры, если важна точность зарисовки).
  • Далее понадобится обязательно нанести шкалу со всеми соответствующими показателями.
  • В нижний участок нанесенных градусов надо вставить нитку красного цвета, а в верхний участок понадобится вставить белую нить. Надо скрепить эти детали и аккуратно отрезать все лишнее.

Самодельные картонные градусники благотворно влияют на умственное развитие ребенка. Желательно изготавливать подобную поделку в компании с малышом, привлекая его к процессу.

Как собрать термометр из вольтметра и термопары, смотрите далее.

Пирометр* своими руками (*прибор для бесконтактного измерения температуры тела)


Этот прибор мастер сделал по заказу местного департамента здравоохранения в связи с нехваткой в продаже промышленных приборов. Цель была сделать относительно недорогое и простое в сборке устройство.

Прибор работает на Arduino Nano использует ИК-датчик MLX90614. Эти датчики есть в нескольких версиях. Распространенная версия BAA имеет охват 90 градусов. Такой большой градус не подходит для целей измерения температуры тела человека. В своей самоделке мастер использует датчик с условным обозначением BCH. Такой датчик измеряет температуру под углом 12 градусов и позиционируется как более точный.

Шаг первый: лазерная резка
Корпус мастер вырезает из фанеры толщиной 3 мм. Для корпуса нужен лист 6 х 8 дюймов (15,24 х 20,32 см).

Файл для резки можно скачать ниже.
irtherm_v2.svg















Шаг четвертый: код
Прежде чем подключать питания не забудьте установить конденсатор 1 мкФ.
Если Arduino Nano имеет набор микросхем CH340 (фото 1), может потребоваться установить определенные драйверы. Маркировка чипа находится на нижней части платы. Драйвер и инструкции по его установке можно скачать здесь.

В зависимости от версии платы может потребоваться переключение между текущими версиями ATmega328P и ATmega328P old bootloader (фото 2). После успешной загрузки кода на экране должны отобразится данные с температурой (фото 4).




Код можно скачать ниже. Есть две версии кода, одна для показаний по Фаренгейту, вторая для Цельсия.
TouchlessIRThermometer_F.ino
TouchlessIRThermometer_c.ino

Шаг пятый: окончательный монтаж
После проверки работоспособности устройства мастер производит его окончательный монтаж на плате.







Шаг шестой: сборка
Теперь можно приступить к сборке устройства.

Мастер устанавливает *лазерный диод и фиксирует его термоклеем. Устанавливает батарейный разъем в рукоять. Устанавливает и фиксирует термоклеем ИК-датчик. Термоклеем фиксирует внутри корпуса Ардуино и экран.

*Лазерный диод служит для “прицеливания”. Мастер не указал его спецификацию, но судя по комментарию к статье, это маломощный диод.












При измерении температуры необходимо как можно ближе поднести прибор к измеряемой поверхности. В идеале это 5-10 см. Как уже говорилось, ИК-датчик имеет угол измерения 12 градусов и основание этого треугольника должно, по возможности, полностью “находится” на измеряемом объекте.

Мастер предупреждает, что данное изделие не является медицинским оборудованием и его не следует использовать, как замену сертифицированным устройствам. Однако прибор довольно точно определяет температуру и может быть использован для целей раннего выявления лиц с высокой температурой, для и дальнейшего обследования.

Простые полупроводниковые термометры

На рис. 79 приведены принципиальные схемы простейших полупроводниковых термометров на диодах (рис. 79, а) и транзисторе (рис. 79,6), опубликованные в одном из американских радиожурналов. В термоме.

На рис. 79 приведены принципиальные схемы простейших полупроводниковых термометров на диодах (рис. 79, а) и транзисторе (рис. 79,6), опубликованные в одном из американских радиожурналов. В термометре, схема которого дана на рис. 79, а, чувствительным элементом (датчиком) служат четыре кремниевых диода, включенных последовательно и питаемых постоянным током величиной 1 мА. При этом используется смещение вольт-амперной характеристики кремниевых диодов в сторону нуля на 2,11±0,06 мВI°С. Таким, образом, при увеличении температуры от —18 до +100° С напряжение, действующее на каждом диоде, уменьшается более чем на 400 мВ (от 688 до 270 мВ). Следовательно, на всех четырех диодах напряжение уменьшится на 1,6 В, т. е. будет в 4 раза больше.

Читайте также:  Компания nxp представила новые решения на базе lpc микроконтроллеров

Для измерения колебаний напряжения на диодах они включены в одно из плеч моста, в целом состоящего из делителя напряжения на резисторах R3—R5 и резистора R1 последовательно соединенного с диодами Д1—Д4. Индикатором термометра является микроамперметр, включенный в диагональ моста через переменный резистор R2. Мост питается постоянным напряжением 6 В, стабилизированным кремниевым стабилитроном Д5.

Налаживание диодного термометра сводится к калибровке его шкалы, которую осуществляют следующим образом. Диоды, покрытые водостойким лаком, помещают в сосуд с водой, температуру которой контролируют ртутным термометром. Длина проводников, соединяющих диоды Д1—Д4 с измерителем, может составлять несколько метров. Охлаждая или подогревая воду, можно пройти диапазон температур от нуля до 100° С, делая при этом соответствующие отметки на шкале микроамперметра. «Нуль» смещают в нужное место шкалы прибора, подстраивая переменный резистор R4, а диапазон измерения температуры подбирают переменным резистором R2. Для питания диодного термометра можно использовать любой источник постоянного тока напряжением 12—16 В.

Значительно большей чувствительностью обладает транзисторный термометр, схема которого изображена на рис. 79, б.

Это объясняется тем, что здесь в качестве чувствительного элемента используется транзистор, работающий в усилительном каскаде, собранном по схеме с разделенными нагрузками. Благодаря усилительным свойствам транзистора чувствительность термометра возрастает в десятки раз. Органы регулирования и настройки здесь такие же, как в ранее рассмотренной конструкции.

При изготовлении термометра по схеме рис. 79, а можно использовать диоды типа Д105 или Д106 (Д1—Д4), КС156А (Д5). В термометре по схеме рис. 79, б транзистор Т1 может быть типа КТ315 или КТ312 с любым буквенным индексом. Термометр с транзистором типа КТ312 будет обладать меньшей тепловой инерцией, так как у этого транзистора корпус металлический, а у КТ315 — пластмассовый.

Все описанные термометры могут измерять также и отрицательные температуры вплоть до —70° С. В этом случае в термометре целесообразно установить микроамперметр на 100 мкА с нулем в середине шкалы.

Полупроводниковые термометры очень удобны для дистанционного измерении температуры. Например, поместив несколько групп диодов в различных точках холодильника, путем переключения их можно контролировать температуру соответствующего участка. Другой пример — измерение температуры поверхности земли и околоземного слоя воздуха. В условиях сельской местности это имеет большое значение, так как может предупредить о наступлении весенних и летних заморозков на почве. Следить за температурой почвы или воздуха в саду или в огороде можно по показаниям прибора, установленного непосредственно в помещении. Возможны и другие варианты применения полупроводниковых термометров.

Васильев В. А. Зарубежные радиолюбительские конструкции. М., «энергия», 1977.

Простой многоканальный термометр.

Понадобился мне для дома простейший термометр для измерения, так сказать, “забортной” температуры. Наружного термометра за окном у меня нет, поэтому решил собрать простую схему с выносным датчиком для измерения уличной температуры, чтобы не выглядывая в окно и не рассматривая деления на наружном спиртовом термометре (если он имеется), сразу видеть уличную температуру на цифровом табло в помещении.

Схему долго не искал, сразу попался на глаза термометр на PIC-контроллере, автор которого Ondrej Slovak, и так как имеется нормальный программатор, решил собрать эту схему.
Чем она мне понравилась, ну довольно простая, мало деталей и возможность подключать к этому термометру несколько датчиков температуры, которые можно установить в разных местах. Например один в помещении, другой на улице.
Датчики температуры в этом термометре самые обычные, DS18B20. Термометр позволяет подключить к себе от одного, до пятнадцати подобных датчиков, для контроля за температурой в пятнадцати различных мест (может кому-то и понадобится).
Диапазон измерения температуры этого термометра от -55 до +125 ° C, разрешение 0,1 ° C, то есть хватит на все случаи жизни, только если не на крайнем Севере, где температура может опускать и ниже 55-ти градусов.
Температуры ниже -9,9 или выше +99,9 ° C, отображаются с разрешением в 1 ° C. Отрицательные температуры отображаются со знаком “-“, а положительные без знака.
В качестве цифрового индикатора температуры, применён 3-х разрядный светодиодный индикатор с общим анодом.
Отображение температуры различных датчиков происходит автоматически. Сначала анимацией отображается номер температурного датчика в шестнадцатеричном формате (цифры от 1 до 9 и буквы A,B,C,D,E,F) в течении 3 секунд, затем индикация температуры этого датчика (10 секунд).
Как это всё отображается на цифровом индикаторе, видно на анимационном рисунке ниже. Рисунок отображает температуру и номера всех пятнадцати (если они будут) подключенных к термометру датчиков.

Поиск подключенных датчиков происходит после включения питания термометра.
Если к термометру подключён только один датчик, то его номер не отображается и на индикатор выводится только температура этого датчика без всякой анимации.
Термометр собран на микроконтроллере PIC16F88, его так-же можно собрать и на микроконтроллере PIC16F628A. В прикреплённом архиве в конце статьи, имеются прошивки для этих двух микроконтроллеров.
Ниже приведена схема термометра в авторском варианте.

Все температурные датчики подключаются параллельно к одному шлейфу.
Если в процессе эксплуатации какой нибудь датчик выйдет из строя, или с ним нарушится электрический контакт, на индикаторе отобразится неисправность в следующем формате – Er.x. где х = номер неисправного датчика (смотри рисунок ниже).
Повреждение датчика или ошибка связи с датчиком, не сразу выводятся на индикатор, а после того, как до него дойдёт очередь.

Если при включении термометра ни один датчик не будет найден, на дисплее отображается ошибка – E.00. Поиск датчиков при этом по-прежнему повторяется.

При включении термометра и первоначальном поиске датчиков, их серийные номера (первые 8 бит) загружаются и сохраняются в памяти микроконтроллера, и датчикам присваиваются номера (1- самому маленькому номеру и далее по возрастанию до F, если датчиков 15), и может случиться так, что два или более датчиков, которые подключены к термометру, могут иметь один и тот же байт (номер). В этом случае на индикаторе будет отображаться ошибка [E.02] и поиск датчиков будет повторяться.
Если будет отображаться такая ошибка, то нужно будет поочередным изъятием датчиков из термометра, определить, какие из них имеют одни и те же коды (ошибка пропадёт) и заменить этот датчик на другой.

В авторском варианте термометр собран на двухсторонней печатной плате, а если убрать ICSP разъем для внутрисхемного программирования, то на односторонней печатной плате (смотри на рисунке ниже).

Красным цветом на рисунке обозначены проводники на другой стороне платы, которые относятся только к ICSP разъему для внутрисхемного программирования.

Трёх-разрядный светодиодный индикатор, припаивается на противоположную сторону от установки панельки микроконтроллера.

Я особо заморачиваться не стал, и собрал термометр на макетной плате. Индикатор поставил зелёного цвета, такой индикатор более приятен для глаз, особенно в тёмное время суток.

Поставил ещё стабилизатор на пять вольт. Наружный датчик подсоединил к термометру гибкими проводами, длинной три метра, свитыми между собой наподобие витой пары.
Провода припаял к датчику, потом закрыл место пайки и частично сам датчик термо-усадочной трубкой, и потом сами выводы проводов залил ещё клеем для герметизации, так как датчик будет находиться на улице, и это необходимо для защиты его от воздействия всевозможных атмосферных осадков.

С обратной стороны монтаж сделал обычными проводами, в качестве резисторов 300 Ом, поставил резисторы SMD.
Естественно разъём для внутрисхемного программирования устанавливать не стал, он мне тан не нужен.
В качестве блока питания здесь можно использовать любую зарядку для сотового телефона (смартфона).
Я поставил вот такую зарядку, которая давно валялась дома без дела после замены телефона.

Можно поставить в термометр и второй датчик, для контроля температуры, например в помещении, в котором установлен термометр, но мне пока это без надобности, а если понадобится – так поставить второй датчик, дело пяти минут.

Скачать архив;
Архив

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector